These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19520148)

  • 1. An NMR method for the determination of protein binding interfaces using TEMPOL-induced chemical shift perturbations.
    Moriya J; Sakakura M; Tokunaga Y; Prosser RS; Shimada I
    Biochim Biophys Acta; 2009 Oct; 1790(10):1368-76. PubMed ID: 19520148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation.
    Rajesh S; Sakamoto T; Iwamoto-Sugai M; Shibata T; Kohno T; Ito Y
    Biochemistry; 1999 Jul; 38(29):9242-53. PubMed ID: 10413498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution solid-state NMR studies on uniformly [13C,15N]-labeled ubiquitin.
    Seidel K; Etzkorn M; Heise H; Becker S; Baldus M
    Chembiochem; 2005 Sep; 6(9):1638-47. PubMed ID: 16094694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tendamistat surface accessibility to the TEMPOL paramagnetic probe.
    Scarselli M; Bernini A; Segoni C; Molinari H; Esposito G; Lesk AM; Laschi F; Temussi P; Niccolai N
    J Biomol NMR; 1999 Oct; 15(2):125-33. PubMed ID: 10605086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A solid state 13C NMR, crystallographic, and quantum chemical investigation of chemical shifts and hydrogen bonding in histidine dipeptides.
    Cheng F; Sun H; Zhang Y; Mukkamala D; Oldfield E
    J Am Chem Soc; 2005 Sep; 127(36):12544-54. PubMed ID: 16144402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy.
    Manolikas T; Herrmann T; Meier BH
    J Am Chem Soc; 2008 Mar; 130(12):3959-66. PubMed ID: 18321098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assignment of the backbone resonances for microcrystalline ubiquitin.
    Igumenova TI; Wand AJ; McDermott AE
    J Am Chem Soc; 2004 Apr; 126(16):5323-31. PubMed ID: 15099118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation.
    Prosser RS; Luchette PA
    J Magn Reson; 2004 Dec; 171(2):225-32. PubMed ID: 15546748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen as a paramagnetic probe of clustering and solvent exposure in folded and unfolded states of an SH3 domain.
    Bezsonova I; Evanics F; Marsh JA; Forman-Kay JD; Prosser RS
    J Am Chem Soc; 2007 Feb; 129(6):1826-35. PubMed ID: 17253684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state NMR and 2,3-dicyano-5,7-dimethyl-6H-1,4-diazepine.
    Njus JM
    Solid State Nucl Magn Reson; 2006 Jun; 29(4):283-93. PubMed ID: 16289521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic aspect of bacteriorhodopsin as a typical membrane protein as revealed by site-directed solid-state 13C NMR.
    Saitô H; Yamaguchi S; Okuda H; Shiraishi A; Tuzi S
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):5-14. PubMed ID: 14698378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR chemical shift mapping of the binding site of a protein proteinase inhibitor: changes in the (1)H, (13)C and (15)N NMR chemical shifts of turkey ovomucoid third domain upon binding to bovine chymotrypsin A(alpha).
    Song J; Markley JL
    J Mol Recognit; 2001; 14(3):166-71. PubMed ID: 11391787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in the 13C NMR spectroscopic analysis of paramagnetic hemes and heme proteins.
    Rivera M; Caignan GA
    Anal Bioanal Chem; 2004 Mar; 378(6):1464-83. PubMed ID: 15214408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
    Franks WT; Zhou DH; Wylie BJ; Money BG; Graesser DT; Frericks HL; Sahota G; Rienstra CM
    J Am Chem Soc; 2005 Sep; 127(35):12291-305. PubMed ID: 16131207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple-spin analysis of chemical-shift-selective (13C, 13C) transfer in uniformly labeled biomolecules.
    Sonnenberg L; Luca S; Baldus M
    J Magn Reson; 2004 Jan; 166(1):100-10. PubMed ID: 14675825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of NADP+ binding to perdeuterated MurB: backbone atom NMR assignments and chemical-shift changes.
    Constantine KL; Mueller L; Goldfarb V; Wittekind M; Metzler WJ; Yanchunas J; Robertson JG; Malley MF; Friedrichs MS; Farmer BT
    J Mol Biol; 1997 Apr; 267(5):1223-46. PubMed ID: 9150408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homo-nuclear 13C J-decoupling in uniformly 13C-enriched solid proteins.
    Igumenova TI; McDermott AE
    J Magn Reson; 2005 Jul; 175(1):11-20. PubMed ID: 15949744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing protein structure by solvent perturbation of NMR spectra: the surface accessibility of bovine pancreatic trypsin inhibitor.
    Molinari H; Esposito G; Ragona L; Pegna M; Niccolai N; Brunne RM; Lesk AM; Zetta L
    Biophys J; 1997 Jul; 73(1):382-96. PubMed ID: 9199802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR crystallography of campho[2,3-c]pyrazole (Z' = 6): combining high-resolution 1H-13C solid-state MAS NMR spectroscopy and GIPAW chemical-shift calculations.
    Webber AL; Emsley L; Claramunt RM; Brown SP
    J Phys Chem A; 2010 Sep; 114(38):10435-42. PubMed ID: 20815383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.