These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 19520413)
1. Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration. Zazouli MA; Susanto H; Nasseri S; Ulbricht M Water Res; 2009 Jul; 43(13):3270-80. PubMed ID: 19520413 [TBL] [Abstract][Full Text] [Related]
2. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Yoon J; Amy G; Chung J; Sohn J; Yoon Y Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331 [TBL] [Abstract][Full Text] [Related]
3. Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Verliefde AR; Heijman SG; Cornelissen ER; Amy G; Van der Bruggen B; van Dijk JC Water Res; 2007 Aug; 41(15):3227-40. PubMed ID: 17583761 [TBL] [Abstract][Full Text] [Related]
4. The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration. Comerton AM; Andrews RC; Bagley DM Water Res; 2009 Feb; 43(3):613-22. PubMed ID: 19046596 [TBL] [Abstract][Full Text] [Related]
5. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Radjenović J; Petrović M; Ventura F; Barceló D Water Res; 2008 Aug; 42(14):3601-10. PubMed ID: 18656225 [TBL] [Abstract][Full Text] [Related]
6. A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes. Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G Water Res; 2010 Jan; 44(2):373-84. PubMed ID: 19616272 [TBL] [Abstract][Full Text] [Related]
7. Studies on cleaning the polyvinylchloride ultrafiltration membrane fouled by sodium alginate. Guo X; Chen X; Hu W Environ Technol; 2009 Apr; 30(5):431-5. PubMed ID: 19507433 [TBL] [Abstract][Full Text] [Related]
8. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production. Jermann D; Pronk W; Meylan S; Boller M Water Res; 2007 Apr; 41(8):1713-22. PubMed ID: 17346766 [TBL] [Abstract][Full Text] [Related]
9. Influence of operating parameters on the arsenic removal by nanofiltration. Figoli A; Cassano A; Criscuoli A; Mozumder MS; Uddin MT; Islam MA; Drioli E Water Res; 2010 Jan; 44(1):97-104. PubMed ID: 19781734 [TBL] [Abstract][Full Text] [Related]
10. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator. Nghiem LD; Vogel D; Khan S Water Res; 2008 Sep; 42(15):4049-58. PubMed ID: 18678386 [TBL] [Abstract][Full Text] [Related]
11. Removal of acetaminophen in water by laccase immobilized in barium alginate. Ratanapongleka K; Punbut S Environ Technol; 2018 Feb; 39(3):336-345. PubMed ID: 28278092 [TBL] [Abstract][Full Text] [Related]
12. Influence of interactions between NOM and particles on UF fouling mechanisms. Jermann D; Pronk W; Kägi R; Halbeisen M; Boller M Water Res; 2008 Aug; 42(14):3870-8. PubMed ID: 18715606 [TBL] [Abstract][Full Text] [Related]
13. Retention of pesticide Endosulfan by nanofiltration: influence of organic matter-pesticide complexation and solute-membrane interactions. De Munari A; Semiao AJ; Antizar-Ladislao B Water Res; 2013 Jun; 47(10):3484-96. PubMed ID: 23615337 [TBL] [Abstract][Full Text] [Related]
14. Use of surfactant modified ultrafiltration for perchlorate (Cl(O)(4-)) removal. Yoon J; Yoon Y; Amy G; Cho J; Foss D; Kim TH Water Res; 2003 May; 37(9):2001-12. PubMed ID: 12691884 [TBL] [Abstract][Full Text] [Related]
15. Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane: Characteristics and mechanisms. Wang J; Wang L; Miao R; Lv Y; Wang X; Meng X; Yang R; Zhang X Water Res; 2016 Mar; 91():203-13. PubMed ID: 26799710 [TBL] [Abstract][Full Text] [Related]
16. Reduction of natural organic matter by nanofiltration process. Chang EE; Chen YW; Lin YL; Chiang PC Chemosphere; 2009 Aug; 76(9):1265-72. PubMed ID: 19545886 [TBL] [Abstract][Full Text] [Related]
17. Complexity of ultrafiltration membrane fouling caused by macromolecular dissolved organic compounds in secondary effluents. Haberkamp J; Ernst M; Böckelmann U; Szewzyk U; Jekel M Water Res; 2008 Jun; 42(12):3153-61. PubMed ID: 18423516 [TBL] [Abstract][Full Text] [Related]
18. Removal of natural organic matter and THM formation potential by ultra- and nanofiltration of surface water. de la Rubia A; Rodríguez M; León VM; Prats D Water Res; 2008 Feb; 42(3):714-22. PubMed ID: 17765283 [TBL] [Abstract][Full Text] [Related]
19. Removal of natural hormone estrone from secondary effluents using nanofiltration and reverse osmosis. Jin X; Hu J; Ong SL Water Res; 2010 Jan; 44(2):638-48. PubMed ID: 19879623 [TBL] [Abstract][Full Text] [Related]
20. The role of sodium alginate in improving floc size and strength and the subsequent effects on ultrafiltration membrane fouling. Wang Y; Li X; Wu C; Zhao Y; Gao BY; Yue Q Environ Technol; 2014; 35(1-4):10-7. PubMed ID: 24600835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]