These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1952076)

  • 41. Identification of phosphorylated peptides from complex mixtures using negative-ion orifice-potential stepping and capillary liquid chromatography/electrospray ionization mass spectrometry.
    Ding J; Burkhart W; Kassel DB
    Rapid Commun Mass Spectrom; 1994 Jan; 8(1):94-8. PubMed ID: 8118063
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of digestion conditions on phosphoproteomics.
    Dickhut C; Feldmann I; Lambert J; Zahedi RP
    J Proteome Res; 2014 Jun; 13(6):2761-70. PubMed ID: 24724590
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mapping and sequence-specific identification of phosphopeptides in unfractionated protein digest mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Yip TT; Hutchens TW
    FEBS Lett; 1992 Aug; 308(2):149-53. PubMed ID: 1499723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions.
    Gehrig PM; Roschitzki B; Rutishauser D; Reiland S; Schlapbach R
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1435-45. PubMed ID: 19353557
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An E. coli over-expression system for multiply-phosphorylated proteins and its use in a study of calcium phosphate sequestration by novel recombinant phosphopeptides.
    Clegg RA; Holt C
    Protein Expr Purif; 2009 Sep; 67(1):23-34. PubMed ID: 19364535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the in vitro phosphorylation sites on Gs alpha mediated by pp60c-src.
    Moyers JS; Linder ME; Shannon JD; Parsons SJ
    Biochem J; 1995 Jan; 305 ( Pt 2)(Pt 2):411-7. PubMed ID: 7530445
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of the phosphorylation sites of H2B histone by a catalytic fragment of p72syk from porcine spleen.
    Sakai K; Tanaka Y; Asahi M; Shimomura R; Taniguchi T; Hashimoto E; Yamamura H
    FEBS Lett; 1991 Dec; 294(1-2):104-8. PubMed ID: 1743280
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorylation of rabbit reticulocyte guanine nucleotide exchange factor in vivo. Identification of putative casein kinase II phosphorylation sites.
    Aroor AR; Denslow ND; Singh LP; O'Brien TW; Wahba AJ
    Biochemistry; 1994 Mar; 33(11):3350-7. PubMed ID: 8136372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Model studies on iron(III) ion affinity chromatography. II. Interaction of immobilized iron(III) ions with phosphorylated amino acids, peptides and proteins.
    MuszyƄska G; Dobrowolska G; Medin A; Ekman P; Porath JO
    J Chromatogr; 1992 Jun; 604(1):19-28. PubMed ID: 1639926
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phosphopeptide modification and enrichment by oxidation-reduction condensation.
    Warthaka M; Karwowska-Desaulniers P; Pflum MK
    ACS Chem Biol; 2006 Dec; 1(11):697-701. PubMed ID: 17184134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of O-phosphopeptides on solid phase.
    Singer D; Hoffmann R
    Methods Mol Biol; 2008; 494():209-22. PubMed ID: 18726576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphopeptide enrichment with cross-linked Os(II)(dmebpy)
    Zhou J
    Rapid Commun Mass Spectrom; 2018 Jan; 32(1):1-8. PubMed ID: 28884863
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrating titania enrichment, iTRAQ labeling, and Orbitrap CID-HCD for global identification and quantitative analysis of phosphopeptides.
    Wu J; Warren P; Shakey Q; Sousa E; Hill A; Ryan TE; He T
    Proteomics; 2010 Jun; 10(11):2224-34. PubMed ID: 20340162
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.
    Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X
    J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthetic phosphopeptides are substrates for casein kinase II.
    Litchfield DW; Arendt A; Lozeman FJ; Krebs EG; Hargrave PA; Palczewski K
    FEBS Lett; 1990 Feb; 261(1):117-20. PubMed ID: 2307228
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Manipulating the fragmentation patterns of phosphopeptides via gas-phase boron derivatization: determining phosphorylation sites in peptides with multiple serines.
    Gronert S; Li KH; Horiuchi M
    J Am Soc Mass Spectrom; 2005 Dec; 16(12):1905-14. PubMed ID: 16242953
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1,1,1,3,3,3-hexafluoroisopropanol.
    Barnouin KN; Hart SR; Thompson AJ; Okuyama M; Waterfield M; Cramer R
    Proteomics; 2005 Nov; 5(17):4376-88. PubMed ID: 16294313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy.
    Zarling AL; Polefrone JM; Evans AM; Mikesh LM; Shabanowitz J; Lewis ST; Engelhard VH; Hunt DF
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14889-94. PubMed ID: 17001009
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography.
    Kyono Y; Sugiyama N; Imami K; Tomita M; Ishihama Y
    J Proteome Res; 2008 Oct; 7(10):4585-93. PubMed ID: 18767875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.