BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1952084)

  • 1. Etched carbon-fiber electrodes as amperometric detectors of catecholamine secretion from isolated biological cells.
    Kawagoe KT; Jankowski JA; Wightman RM
    Anal Chem; 1991 Aug; 63(15):1589-94. PubMed ID: 1952084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X; Gillis KD
    Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal characteristics of quantal secretion of catecholamines from adrenal medullary cells.
    Jankowski JA; Schroeder TJ; Ciolkowski EL; Wightman RM
    J Biol Chem; 1993 Jul; 268(20):14694-700. PubMed ID: 8325848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips.
    Chen P; Xu B; Tokranova N; Feng X; Castracane J; Gillis KD
    Anal Chem; 2003 Feb; 75(3):518-24. PubMed ID: 12585478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous amperometric measurement of ascorbate and catecholamine secretion from individual bovine adrenal medullary cells.
    Cahill PS; Wightman RM
    Anal Chem; 1995 Aug; 67(15):2599-605. PubMed ID: 8849026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells.
    Gao Y; Chen X; Gupta S; Gillis KD; Gangopadhyay S
    Biomed Microdevices; 2008 Oct; 10(5):623-9. PubMed ID: 18493856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved surface-patterned platinum microelectrodes for the study of exocytotic events.
    Berberian K; Kisler K; Fang Q; Lindau M
    Anal Chem; 2009 Nov; 81(21):8734-40. PubMed ID: 19780579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.
    Maruyama K; Ohkawa H; Ogawa S; Ueda A; Niwa O; Suzuki K
    Anal Chem; 2006 Mar; 78(6):1904-12. PubMed ID: 16536427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conical tungsten tips as substrates for the preparation of ultramicroelectrodes.
    Hermans A; Wightman RM
    Langmuir; 2006 Dec; 22(25):10348-53. PubMed ID: 17129002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of size-controllable ultrasmall-disk electrode: monitoring single vesicle release kinetics at tiny structures with high spatio-temporal resolution.
    Li ZY; Zhou W; Wu ZX; Zhang RY; Xu T
    Biosens Bioelectron; 2009 Jan; 24(5):1358-64. PubMed ID: 18804366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the catecholamine content of single mammalian vesicles by collision-adsorption events at an electrode.
    Dunevall J; Fathali H; Najafinobar N; Lovric J; Wigström J; Cans AS; Ewing AG
    J Am Chem Soc; 2015 Apr; 137(13):4344-6. PubMed ID: 25811247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secretion of catecholamines from individual adrenal medullary chromaffin cells.
    Leszczyszyn DJ; Jankowski JA; Viveros OH; Diliberto EJ; Near JA; Wightman RM
    J Neurochem; 1991 Jun; 56(6):1855-63. PubMed ID: 2027003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of etched electrochemical detection for electrophoresis in micron inner diameter capillaries.
    Powell PR; Woods LA; Ewing AG
    J Sep Sci; 2005 Dec; 28(18):2540-5. PubMed ID: 16405186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous detection of catecholamine exocytosis and Ca2+ release from single bovine chromaffin cells using a dual microsensor.
    Xin Q; Wightman RM
    Anal Chem; 1998 May; 70(9):1677-81. PubMed ID: 9599575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of diffusional broadening of vesicular packets of catecholamines released from biological cells during exocytosis.
    Schroeder TJ; Jankowski JA; Kawagoe KT; Wightman RM; Lefrou C; Amatore C
    Anal Chem; 1992 Dec; 64(24):3077-83. PubMed ID: 1492662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of amperometric electrodes.
    Pike CM; Grabner CP; Harkins AB
    J Vis Exp; 2009 May; (27):. PubMed ID: 19415069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amperometric nitric oxide microsensor based on nanopore-platinized platinum: the application for imaging NO concentrations.
    Shim JH; Lee Y
    Anal Chem; 2009 Oct; 81(20):8571-6. PubMed ID: 19775121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. beta-Sonogel-carbon electrodes: a new alternative for the electrochemical determination of catecholamines.
    Izaoumen N; Cubillana-Aguilera LM; Naranjo-Rodríguez I; de Cisneros JL; Bouchta D; Temsamani KR; Palacios-Santander JM
    Talanta; 2009 Apr; 78(2):370-6. PubMed ID: 19203597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(3-methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: Voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen.
    Atta NF; El-Kady MF
    Talanta; 2009 Aug; 79(3):639-47. PubMed ID: 19576424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication, characterization, and potential application of carbon fiber cone nanometer-size electrodes.
    Zhang X; Zhang W; Zhou X; Ogorevc B
    Anal Chem; 1996 Oct; 68(19):3338-43. PubMed ID: 21619269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.