These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 19520862)
1. The wall teichoic acid polymerase TagF is non-processive in vitro and amenable to study using steady state kinetic analysis. Sewell EW; Pereira MP; Brown ED J Biol Chem; 2009 Aug; 284(32):21132-8. PubMed ID: 19520862 [TBL] [Abstract][Full Text] [Related]
2. Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro. Schertzer JW; Brown ED J Biol Chem; 2003 May; 278(20):18002-7. PubMed ID: 12637499 [TBL] [Abstract][Full Text] [Related]
3. Use of CDP-glycerol as an alternate acceptor for the teichoic acid polymerase reveals that membrane association regulates polymer length. Schertzer JW; Brown ED J Bacteriol; 2008 Nov; 190(21):6940-7. PubMed ID: 18723614 [TBL] [Abstract][Full Text] [Related]
4. The TagB protein in Bacillus subtilis 168 is an intracellular peripheral membrane protein that can incorporate glycerol phosphate onto a membrane-bound acceptor in vitro. Bhavsar AP; Truant R; Brown ED J Biol Chem; 2005 Nov; 280(44):36691-700. PubMed ID: 16150696 [TBL] [Abstract][Full Text] [Related]
5. CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC). Pooley HM; Abellan FX; Karamata D J Bacteriol; 1992 Jan; 174(2):646-9. PubMed ID: 1309530 [TBL] [Abstract][Full Text] [Related]
6. Two conserved histidine residues are critical to the function of the TagF-like family of enzymes. Schertzer JW; Bhavsar AP; Brown ED J Biol Chem; 2005 Nov; 280(44):36683-90. PubMed ID: 16141206 [TBL] [Abstract][Full Text] [Related]
7. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid. Bhavsar AP; Erdman LK; Schertzer JW; Brown ED J Bacteriol; 2004 Dec; 186(23):7865-73. PubMed ID: 15547257 [TBL] [Abstract][Full Text] [Related]
8. Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis. Lovering AL; Lin LY; Sewell EW; Spreter T; Brown ED; Strynadka NC Nat Struct Mol Biol; 2010 May; 17(5):582-9. PubMed ID: 20400947 [TBL] [Abstract][Full Text] [Related]
10. The wall teichoic acid polymerase TagF efficiently synthesizes poly(glycerol phosphate) on the TagB product lipid III. Pereira MP; Schertzer JW; D'Elia MA; Koteva KP; Hughes DW; Wright GD; Brown ED Chembiochem; 2008 Jun; 9(9):1385-90. PubMed ID: 18465758 [No Abstract] [Full Text] [Related]
11. Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168. Allison SE; D'Elia MA; Arar S; Monteiro MA; Brown ED J Biol Chem; 2011 Jul; 286(27):23708-16. PubMed ID: 21558268 [TBL] [Abstract][Full Text] [Related]
12. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values. Badurina DS; Zolli-Juran M; Brown ED Biochim Biophys Acta; 2003 Mar; 1646(1-2):196-206. PubMed ID: 12637027 [TBL] [Abstract][Full Text] [Related]
13. Control of synthesis of wall teichoic acid in phosphate-starved cultures of Bacillus subtilis W23. Cheah SC; Hussey H; Baddiley J Eur J Biochem; 1981 Sep; 118(3):497-500. PubMed ID: 6271552 [TBL] [Abstract][Full Text] [Related]
14. tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Soldo B; Lazarevic V; Karamata D Microbiology (Reading); 2002 Jul; 148(Pt 7):2079-2087. PubMed ID: 12101296 [TBL] [Abstract][Full Text] [Related]
15. In vitro synthesis of the unit that links teichoic acid to peptidoglycan. Hancock I; Baddiley J J Bacteriol; 1976 Mar; 125(3):880-6. PubMed ID: 815251 [TBL] [Abstract][Full Text] [Related]
16. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. Pereira MP; D'Elia MA; Troczynska J; Brown ED J Bacteriol; 2008 Aug; 190(16):5642-9. PubMed ID: 18556787 [TBL] [Abstract][Full Text] [Related]
17. Mix-and-Match System for the Enzymatic Synthesis of Enantiopure Glycerol-3-Phosphate-Containing Capsule Polymer Backbones from Litschko C; Budde I; Berger M; Bethe A; Schulze J; Alcala Orozco EA; Mahour R; Goettig P; Führing JI; Rexer T; Gerardy-Schahn R; Schubert M; Fiebig T mBio; 2021 Jun; 12(3):e0089721. PubMed ID: 34076489 [TBL] [Abstract][Full Text] [Related]
19. B. subtilis LytR-CpsA-Psr Enzymes Transfer Wall Teichoic Acids from Authentic Lipid-Linked Substrates to Mature Peptidoglycan In Vitro. Gale RT; Li FKK; Sun T; Strynadka NCJ; Brown ED Cell Chem Biol; 2017 Dec; 24(12):1537-1546.e4. PubMed ID: 29107701 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Wall Teichoic Acid Degradation by the Bacteriophage ϕ29 Appendage Protein GP12 Using Synthetic Substrate Analogs. Myers CL; Ireland RG; Garrett TA; Brown ED J Biol Chem; 2015 Jul; 290(31):19133-45. PubMed ID: 26085106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]