These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19520959)

  • 1. Leading-edge vortices elevate lift of autorotating plant seeds.
    Lentink D; Dickson WB; van Leeuwen JL; Dickinson MH
    Science; 2009 Jun; 324(5933):1438-40. PubMed ID: 19520959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leading-edge vortex improves lift in slow-flying bats.
    Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A
    Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of autorotating plant seeds.
    Sunada S; Ide A; Hoshino Y; Okamoto M
    J Theor Biol; 2015 Dec; 386():55-61. PubMed ID: 26382230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leading-edge vortex lifts swifts.
    Videler JJ; Stamhuis EJ; Povel GD
    Science; 2004 Dec; 306(5703):1960-2. PubMed ID: 15591209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual leading-edge vortices on flapping wings.
    Lu Y; Shen GX; Lai GJ
    J Exp Biol; 2006 Dec; 209(Pt 24):5005-16. PubMed ID: 17142689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When vortices stick: an aerodynamic transition in tiny insect flight.
    Miller LA; Peskin CS
    J Exp Biol; 2004 Aug; 207(Pt 17):3073-88. PubMed ID: 15277562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
    Aono H; Liang F; Liu H
    J Exp Biol; 2008 Jan; 211(Pt 2):239-57. PubMed ID: 18165252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spanwise flow and the attachment of the leading-edge vortex on insect wings.
    Birch JM; Dickinson MH
    Nature; 2001 Aug; 412(6848):729-33. PubMed ID: 11507639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.
    Lu Y; Shen GX
    J Exp Biol; 2008 Apr; 211(Pt 8):1221-30. PubMed ID: 18375846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-dimensional aerodynamic model of freely flying insects.
    Iima M
    J Theor Biol; 2007 Aug; 247(4):657-71. PubMed ID: 17482214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating mahogany seed (Swietenia macrophylla).
    Salcedo E; Treviño C; Vargas RO; Martínez-Suástegui L
    J Exp Biol; 2013 Jun; 216(Pt 11):2017-30. PubMed ID: 23430990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The aerodynamic effects of wing-wing interaction in flapping insect wings.
    Lehmann FO; Sane SP; Dickinson M
    J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational fluid dynamics of 'clap and fling' in the smallest insects.
    Miller LA; Peskin CS
    J Exp Biol; 2005 Jan; 208(Pt 2):195-212. PubMed ID: 15634840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bat flight generates complex aerodynamic tracks.
    Hedenström A; Johansson LC; Wolf M; von Busse R; Winter Y; Spedding GR
    Science; 2007 May; 316(5826):894-7. PubMed ID: 17495171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of flexibility on the aerodynamic performance of a hovering wing.
    Vanella M; Fitzgerald T; Preidikman S; Balaras E; Balachandran B
    J Exp Biol; 2009 Jan; 212(Pt 1):95-105. PubMed ID: 19088215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes.
    Bartol IK; Gharib M; Webb PW; Weihs D; Gordon MS
    J Exp Biol; 2005 Jan; 208(Pt 2):327-44. PubMed ID: 15634852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leading-edge vortices over swept-back wings with varying sweep geometries.
    Lambert WB; Stanek MJ; Gurka R; Hackett EE
    R Soc Open Sci; 2019 Jul; 6(7):190514. PubMed ID: 31417749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coriolis effects enhance lift on revolving wings.
    Jardin T; David L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):031001. PubMed ID: 25871040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.