These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 19521271)

  • 21. Adaptive optics simulation of intraocular lenses with modified spherical aberration.
    Piers PA; Fernandez EJ; Manzanera S; Norrby S; Artal P
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4601-10. PubMed ID: 15557473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Depth of focus and visual acuity with primary and secondary spherical aberration.
    Yi F; Iskander DR; Collins M
    Vision Res; 2011 Jul; 51(14):1648-58. PubMed ID: 21609729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of blast trauma and corneal foreign bodies on visual performance.
    Coe CD; Bower KS; Brooks DB; Stutzman RD; Hammer JB
    Optom Vis Sci; 2010 Aug; 87(8):604-11. PubMed ID: 20512081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Higher-order aberrations of age-related cataract.
    Rocha KM; Nosé W; Bottós K; Bottós J; Morimoto L; Soriano E
    J Cataract Refract Surg; 2007 Aug; 33(8):1442-6. PubMed ID: 17662439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison between subjective refraction and aberrometry-derived refraction in keratoconus patients and control subjects.
    Jinabhai A; O'Donnell C; Radhakrishnan H
    Curr Eye Res; 2010 Aug; 35(8):703-14. PubMed ID: 20673047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Refractive and aberrometric outcomes of intracorneal ring segments for keratoconus: mechanical versus femtosecond-assisted procedures.
    Piñero DP; Alio JL; El Kady B; Coskunseven E; Morbelli H; Uceda-Montanes A; Maldonado MJ; Cuevas D; Pascual I
    Ophthalmology; 2009 Sep; 116(9):1675-87. PubMed ID: 19643498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accommodative lag and fluctuations when optical aberrations are manipulated.
    Gambra E; Sawides L; Dorronsoro C; Marcos S
    J Vis; 2009 Jun; 9(6):4.1-15. PubMed ID: 19761295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations.
    Guo H; Atchison DA; Birt BJ
    Vision Res; 2008 Aug; 48(17):1804-11. PubMed ID: 18597809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Benefit of adaptive optics aberration correction at preferred retinal locus.
    Baskaran K; Rosén R; Lewis P; Unsbo P; Gustafsson J
    Optom Vis Sci; 2012 Sep; 89(9):1417-23. PubMed ID: 22842306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zernike polynomial fitting fails to represent all visually significant corneal aberrations.
    Smolek MK; Klyce SD
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4676-81. PubMed ID: 14578385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repeatability of corneal first-surface wavefront aberrations measured with Pentacam corneal topography.
    Shankar H; Taranath D; Santhirathelagan CT; Pesudovs K
    J Cataract Refract Surg; 2008 May; 34(5):727-34. PubMed ID: 18471625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of eyelid position on wavefront aberrations.
    Han W; Kwan W; Wang J; Yip SP; Yap M
    Ophthalmic Physiol Opt; 2007 Jan; 27(1):66-75. PubMed ID: 17239192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Limits of spherical blur determined with an adaptive optics mirror.
    Atchison DA; Guo H; Fisher SW
    Ophthalmic Physiol Opt; 2009 May; 29(3):300-11. PubMed ID: 19422562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes of corneal aberrations in sitting and supine positions.
    Kawamorita T; Handa T; Uozato H
    Am J Ophthalmol; 2006 Feb; 141(2):412-4. PubMed ID: 16458716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual effect of the combined correction of spherical and longitudinal chromatic aberrations.
    Artal P; Manzanera S; Piers P; Weeber H
    Opt Express; 2010 Jan; 18(2):1637-48. PubMed ID: 20173991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual acuity and optical parameters in progressive-power lenses.
    Villegas EA; Artal P
    Optom Vis Sci; 2006 Sep; 83(9):672-81. PubMed ID: 16971846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light.
    Schwarz C; Cánovas C; Manzanera S; Weeber H; Prieto PM; Piers P; Artal P
    J Vis; 2014 Feb; 14(2):. PubMed ID: 24520150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution retinal imaging with micro adaptive optics system.
    Niu S; Shen J; Liang C; Zhang Y; Li B
    Appl Opt; 2011 Aug; 50(22):4365-75. PubMed ID: 21833112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical outcomes and postoperative intraocular optical quality with a microincision aberration-free aspheric intraocular lens.
    Alió JL; Piñero DP; Ortiz D; Montalbán R
    J Cataract Refract Surg; 2009 Sep; 35(9):1548-54. PubMed ID: 19683151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term follow-up of orthokeratology corneal reshaping using wavefront aberrometry and contrast sensitivity.
    Stillitano I; Schor P; Lipener C; Hofling-Lima AL
    Eye Contact Lens; 2008 May; 34(3):140-5. PubMed ID: 18463478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.