These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19521611)

  • 1. Copper-based nanostructures: promising antibacterial agents and photocatalysts.
    Gao F; Pang H; Xu S; Lu Q
    Chem Commun (Camb); 2009 Jun; (24):3571-3. PubMed ID: 19521611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production.
    Barreca D; Fornasiero P; Gasparotto A; Gombac V; Maccato C; Montini T; Tondello E
    ChemSusChem; 2009; 2(3):230-3. PubMed ID: 19235823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology effect on antibacterial activity of cuprous oxide.
    Pang H; Gao F; Lu Q
    Chem Commun (Camb); 2009 Mar; (9):1076-8. PubMed ID: 19225641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring CuO nanostructures for enhanced photocatalytic property.
    Liu J; Jin J; Deng Z; Huang SZ; Hu ZY; Wang L; Wang C; Chen LH; Li Y; Van Tendeloo G; Su BL
    J Colloid Interface Sci; 2012 Oct; 384(1):1-9. PubMed ID: 22818959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial nanostructured composite films for biomedical applications: microstructural characteristics, biocompatibility, and antibacterial mechanisms.
    Lee FP; Wang DY; Chen LK; Kung CM; Wu YC; Ou KL; Yu CH
    Biofouling; 2013; 29(3):295-305. PubMed ID: 23528126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inward replacement/etching route to synthesize double-walled Cu7S4 nanoboxes and their enhanced performances in ammonia gas sensing.
    Zhang W; Chen Z; Yang Z
    Phys Chem Chem Phys; 2009 Aug; 11(29):6263-8. PubMed ID: 19606338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical growth of nickel hollow nanostructures on copper substrates.
    Li GR; Kay LG; Liu GK; Tong YX
    J Phys Chem B; 2005 Dec; 109(49):23300-3. PubMed ID: 16375297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation exchange induced tunable properties of a nanoporous octanuclear Cu(II) wheel with double-helical structure.
    Zhao J; Mi L; Hu J; Hou H; Fan Y
    J Am Chem Soc; 2008 Nov; 130(46):15222-3. PubMed ID: 18939798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reversible nanoswitch as an ON-OFF photocatalyst.
    Schmittel M; Pramanik S; De S
    Chem Commun (Camb); 2012 Dec; 48(96):11730-2. PubMed ID: 23079778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic degradation of tartrazine dye using CuO straw-sheaf-like nanostructures.
    Rao MP; Wu JJ; Asiri AM; Anandan S
    Water Sci Technol; 2017 Mar; 75(5-6):1421-1430. PubMed ID: 28333057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive oxygen sensors based on Cu(I) complex-polystyrene composite nanofibrous membranes prepared by electrospinning.
    Wang Y; Li B; Liu Y; Zhang L; Zuo Q; Shi L; Su Z
    Chem Commun (Camb); 2009 Oct; (39):5868-70. PubMed ID: 19787124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of ultrasharp vertically aligned Cu-Si nanocones by a DC plasma process.
    Klein KL; Melechko AV; Fowlkes JD; Rack PD; Hensley DK; Meyer HM; Allard LF; McKnight TE; Simpson ML
    J Phys Chem B; 2006 Mar; 110(10):4766-71. PubMed ID: 16526713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonochemical synthesis of CuO nanostructures with different morphology.
    Anandan S; Lee GJ; Wu JJ
    Ultrason Sonochem; 2012 May; 19(3):682-6. PubMed ID: 21940191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surpassing the use of copper in the click functionalization of polymeric nanostructures: a strain-promoted approach.
    Lallana E; Fernandez-Megia E; Riguera R
    J Am Chem Soc; 2009 Apr; 131(16):5748-50. PubMed ID: 19348483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas.
    Yang M; He J; Hu X; Yan C; Cheng Z
    Environ Sci Technol; 2011 Jul; 45(14):6088-94. PubMed ID: 21699255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization and photocatalytic activity of CuO nanoflowers.
    Umadevi M; Jegatha Christy A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 109():133-7. PubMed ID: 23518510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-controlled growth of In(OH)3/In2O3 nanostructures by electrodeposition.
    Chu D; Masuda Y; Ohji T; Kato K
    Langmuir; 2010 Sep; 26(18):14814-20. PubMed ID: 20726607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor.
    Sun S; Zhang X; Sun Y; Yang S; Song X; Yang Z
    Phys Chem Chem Phys; 2013 Jul; 15(26):10904-13. PubMed ID: 23698563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoclinic CuO nanoflowers on resin support: recyclable catalyst to obtain perylene compound.
    Basu M; Sinha AK; Pradhan M; Sarkar S; Pal A; Pal T
    Chem Commun (Camb); 2010 Dec; 46(46):8785-7. PubMed ID: 20957269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simplifying the creation of dumbbell-like Cu-Ag nanostructures and their enhanced catalytic activity.
    Huang X; Li Y; Zhou H; Zhong X; Duan X; Huang Y
    Chemistry; 2012 Jul; 18(31):9505-10. PubMed ID: 22740233
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.