These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 19521631)
1. One metal-two pathways to the carboxylate-enhanced, iron-containing quercetinase mimics. Baráth G; Kaizer J; Speier G; Párkányi L; Kuzmann E; Vértes A Chem Commun (Camb); 2009 Jun; (24):3630-2. PubMed ID: 19521631 [TBL] [Abstract][Full Text] [Related]
2. Manganese and iron flavonolates as flavonol 2,4-dioxygenase mimics. Kaizer J; Baráth G; Pap J; Speier G; Giorgi M; Réglier M Chem Commun (Camb); 2007 Dec; (48):5235-7. PubMed ID: 18060153 [TBL] [Abstract][Full Text] [Related]
3. Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases. Bruijnincx PC; Lutz M; Spek AL; Hagen WR; Weckhuysen BM; van Koten G; Gebbink RJ J Am Chem Soc; 2007 Feb; 129(8):2275-86. PubMed ID: 17266307 [TBL] [Abstract][Full Text] [Related]
4. Visualising the carboxylate shift at a bioinspired diiron(II) site in the solid state. Burger B; Dechert S; Grosse C; Demeshko S; Meyer F Chem Commun (Camb); 2011 Oct; 47(37):10428-30. PubMed ID: 21842055 [TBL] [Abstract][Full Text] [Related]
5. Bio-inspired flavonol and quinolone dioxygenation by a non-heme iron catalyst modeling the action of flavonol and 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases. Pap JS; Matuz A; Baráth G; Kripli B; Giorgi M; Speier G; Kaizer J J Inorg Biochem; 2012 Mar; 108():15-21. PubMed ID: 22265834 [TBL] [Abstract][Full Text] [Related]
6. A functional model of extradiol-cleaving catechol dioxygenases: mimicking the 2-his-1-carboxylate facial triad. Paria S; Halder P; Paine TK Inorg Chem; 2010 May; 49(10):4518-23. PubMed ID: 20392074 [TBL] [Abstract][Full Text] [Related]
7. Catalytic dioxygenation of flavonol by M(II)-complexes (M = Mn, Fe, Co, Ni, Cu and Zn) - mimicking the M(II)-substituted quercetin 2,3-dioxygenase. Sun YJ; Huang QQ; Li P; Zhang JJ Dalton Trans; 2015 Aug; 44(31):13926-38. PubMed ID: 26153684 [TBL] [Abstract][Full Text] [Related]
8. A structural and functional model for dioxygenases with a 2-His-1-carboxylate triad. Oldenburg PD; Ke CY; Tipton AA; Shteinman AA; Que L Angew Chem Int Ed Engl; 2006 Dec; 45(47):7975-8. PubMed ID: 17096444 [No Abstract] [Full Text] [Related]
9. Aromatic ring cleavage of 2-amino-4-tert-butylphenol by a nonheme iron(II) complex: functional model of 2-aminophenol dioxygenases. Chakraborty B; Paine TK Angew Chem Int Ed Engl; 2013 Jan; 52(3):920-4. PubMed ID: 23197337 [No Abstract] [Full Text] [Related]
10. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480 [TBL] [Abstract][Full Text] [Related]
11. Dioxygenation of cysteamine to hypotaurine at a tris(pyrazolyl)borate iron(ii) unit - cysteamine dioxygenase mimicking? Sallmann M; Braun B; Limberg C Chem Commun (Camb); 2015 Apr; 51(31):6785-7. PubMed ID: 25786780 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly of the 2-His-1-carboxylate facial triad in mononuclear iron(II) and zinc(II) models of metalloenzyme active sites. Friese SJ; Kucera BE; Que L; Tolman WB Inorg Chem; 2006 Oct; 45(20):8003-5. PubMed ID: 16999395 [TBL] [Abstract][Full Text] [Related]
13. Kinetic and spectroscopic studies on the quercetin 2,3-dioxygenase from Bacillus subtilis. Schaab MR; Barney BM; Francisco WA Biochemistry; 2006 Jan; 45(3):1009-16. PubMed ID: 16411777 [TBL] [Abstract][Full Text] [Related]
14. Molecular simulations bring new insights into flavonoid/quercetinase interaction modes. Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S Proteins; 2007 Jun; 67(4):961-70. PubMed ID: 17373707 [TBL] [Abstract][Full Text] [Related]
15. Structural roles of the active site iron(III) ions in catechol 1,2-dioxygenases and differential secondary structure changes in isoenzymes A and B from Acinetobacter radioresistens S13. Di Nardo G; Tilli S; Pessione E; Cavaletto M; Giunta C; Briganti F Arch Biochem Biophys; 2004 Nov; 431(1):79-87. PubMed ID: 15464729 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and molecular characterization of a quercetinase from Penicillium olsonii. Tranchimand S; Ertel G; Gaydou V; Gaudin C; Tron T; Iacazio G Biochimie; 2008 May; 90(5):781-9. PubMed ID: 18206655 [TBL] [Abstract][Full Text] [Related]
17. The Behavior of Trispyrazolylborato-Metal(II)-Flavonolate Complexes as Functional Models for Bacterial Quercetinase-Assessment of the Metal Impact. Hoof S; Limberg C Inorg Chem; 2019 Oct; 58(19):12843-12853. PubMed ID: 31502453 [TBL] [Abstract][Full Text] [Related]
18. Dendrimers with both polar and apolar nanocontainer characteristics. Vutukuri DR; Basu S; Thayumanavan S J Am Chem Soc; 2004 Dec; 126(48):15636-7. PubMed ID: 15571373 [TBL] [Abstract][Full Text] [Related]
19. Cerium(IV)-mediated oxidation of flavonol with relevance to flavonol 2,4-dioxygenase. Direct evidence for spin delocalization in the flavonoxy radical. Kaizer J; Ganszky I; Speier G; Rockenbauer A; Korecz L; Giorgi M; Réglier M; Antonczak S J Inorg Biochem; 2007 Jun; 101(6):893-9. PubMed ID: 17408749 [TBL] [Abstract][Full Text] [Related]
20. Series of structural and functional models for the ES (enzyme-substrate) complex of the Co(II)-containing quercetin 2,3-dioxygenase. Sun YJ; Huang QQ; Zhang JJ Inorg Chem; 2014 Mar; 53(6):2932-42. PubMed ID: 24601533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]