These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 19521771)

  • 1. On the efficacy of the combined use of the cross-bicoherence with surrogate data technique to statistically quantify the presence of nonlinear interactions.
    Siu KL; Chon KH
    Ann Biomed Eng; 2009 Sep; 37(9):1839-48. PubMed ID: 19521771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical approach to quantify the presence of phase coupling using the bispectrum.
    Siu KL; Ahn JM; Ju K; Lee M; Shin K; Chon KH
    IEEE Trans Biomed Eng; 2008 May; 55(5):1512-20. PubMed ID: 18440897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between TGF-dependent and myogenic oscillations in tubular pressure and whole kidney blood flow in both SDR and SHR.
    Raghavan R; Chen X; Yip KP; Marsh DJ; Chon KH
    Am J Physiol Renal Physiol; 2006 Mar; 290(3):F720-32. PubMed ID: 16219915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust method for detection of linear and nonlinear interactions: application to renal blood flow dynamics.
    Feng L; Siu K; Moore LC; Marsh DJ; Chon KH
    Ann Biomed Eng; 2006 Feb; 34(2):339-53. PubMed ID: 16496083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree.
    Marsh DJ; Sosnovtseva OV; Mosekilde E; Holstein-Rathlou NH
    Chaos; 2007 Mar; 17(1):015114. PubMed ID: 17411271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats.
    Chon KH; Chen YM; Holstein-Rathlou NH; Marmarelis VZ
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):342-53. PubMed ID: 9509750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats.
    Sosnovtseva OV; Pavlov AN; Mosekilde E; Yip KP; Holstein-Rathlou NH; Marsh DJ
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1545-55. PubMed ID: 17728377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons.
    Layton AT; Moore LC; Layton HE
    Bull Math Biol; 2009 Apr; 71(3):515-55. PubMed ID: 19205808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Granger causality by nonlinear model identification: application to short-term cardiovascular variability.
    Faes L; Nollo G; Chon KH
    Ann Biomed Eng; 2008 Mar; 36(3):381-95. PubMed ID: 18228143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-varying properties of renal autoregulatory mechanisms.
    Zou R; Cupples WA; Yip KP; Holstein-Rathlou NH; Chon KH
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1112-20. PubMed ID: 12374335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Canonical bicoherence analysis of dynamic EEG data.
    He H; Thomson DJ
    J Comput Neurosci; 2010 Aug; 29(1-2):23-34. PubMed ID: 19629667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for the time-varying nonlinear prediction of complex nonstationary biomedical signals.
    Faes L; Chon KH; Nollo G
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):205-9. PubMed ID: 19272876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameter estimation of feedback gain in a stochastic model of renal hemodynamics: differences between spontaneously hypertensive and Sprague-Dawley rats.
    Ditlevsen S; Yip KP; Marsh DJ; Holstein-Rathlou NH
    Am J Physiol Renal Physiol; 2007 Feb; 292(2):F607-16. PubMed ID: 17018842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the spatio-temporal organisation of quadratic phase-couplings in 'tracĂ© alternant' EEG pattern in full-term newborns.
    Witte H; Putsche P; Schwab K; Eiselt M; Helbig M; Suesse T
    Clin Neurophysiol; 2004 Oct; 115(10):2308-15. PubMed ID: 15351372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear dynamics applied to blood pressure control.
    Eyal S; Almog Y; Oz O; Eliash S; Akselrod S
    Auton Neurosci; 2001 Jun; 89(1-2):24-30. PubMed ID: 11474643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The comodulation measure of neuronal oscillations with general harmonic wavelet bicoherence and application to sleep analysis.
    Li X; Li D; Voss LJ; Sleigh JW
    Neuroimage; 2009 Nov; 48(3):501-14. PubMed ID: 19615451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicoherence Interpretation in EEG Requires Signal to Noise Ratio Quantification: An Application to Sensorimotor Rhythms.
    Tacchino G; Coelli S; Reali P; Galli M; Bianchi AM
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2696-2704. PubMed ID: 31995471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of time-variant quadratic phase couplings in the tracĂ© alternant EEG by recursive estimation of 3rd-order time-frequency distributions.
    Helbig M; Schwab K; Leistritz L; Eiselt M; Witte H
    J Neurosci Methods; 2006 Oct; 157(1):168-77. PubMed ID: 16737739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of low-frequency oscillations in renal blood flow.
    Siu KL; Sung B; Cupples WA; Moore LC; Chon KH
    Am J Physiol Renal Physiol; 2009 Jul; 297(1):F155-62. PubMed ID: 19420111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics.
    Sosnovtseva OV; Pavlov AN; Mosekilde E; Holstein-Rathlou NH; Marsh DJ
    Physiol Meas; 2005 Aug; 26(4):351-62. PubMed ID: 15886431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.