BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19521830)

  • 1. Computational analysis of the yeast proteome: understanding and exploiting functional specificity in genomic data.
    Huttenhower C; Myers CL; Hibbs MA; Troyanskaya OG
    Methods Mol Biol; 2009; 548():273-93. PubMed ID: 19521830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating functional genomics data.
    Lee I; Marcotte EM
    Methods Mol Biol; 2008; 453():267-78. PubMed ID: 18712309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach for ordering signal transduction pathway components from genomics and proteomics Data.
    Liu Y; Zhao H
    BMC Bioinformatics; 2004 Oct; 5():158. PubMed ID: 15504238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T; Keating AE
    BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics. Integrating interactomes.
    Gerstein M; Lan N; Jansen R
    Science; 2002 Jan; 295(5553):284-7. PubMed ID: 11786630
    [No Abstract]   [Full Text] [Related]  

  • 6. 'PACLIMS': a component LIM system for high-throughput functional genomic analysis.
    Donofrio N; Rajagopalon R; Brown D; Diener S; Windham D; Nolin S; Floyd A; Mitchell T; Galadima N; Tucker S; Orbach MJ; Patel G; Farman M; Pampanwar V; Soderlund C; Lee YH; Dean RA
    BMC Bioinformatics; 2005 Apr; 6():94. PubMed ID: 15826298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting co-complexed protein pairs using genomic and proteomic data integration.
    Zhang LV; Wong SL; King OD; Roth FP
    BMC Bioinformatics; 2004 Apr; 5():38. PubMed ID: 15090078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale protein function prediction in yeast Saccharomyces cerevisiae through integrating multiple sources of high-throughput data.
    Chen Y; Xu D
    Pac Symp Biocomput; 2005; ():471-82. PubMed ID: 15759652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the yeast proteome: a bioinformatics perspective.
    Grigoriev A
    Expert Rev Proteomics; 2004 Aug; 1(2):193-205. PubMed ID: 15966814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Context-sensitive data integration and prediction of biological networks.
    Myers CL; Troyanskaya OG
    Bioinformatics; 2007 Sep; 23(17):2322-30. PubMed ID: 17599939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing yeast protein-protein interaction data obtained from different sources.
    Bader GD; Hogue CW
    Nat Biotechnol; 2002 Oct; 20(10):991-7. PubMed ID: 12355115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A statistical framework to discover true associations from multiprotein complex pull-down proteomics data sets.
    Shen C; Li L; Chen JY
    Proteins; 2006 Aug; 64(2):436-43. PubMed ID: 16705649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast genomic databases and the challenge of the post-genomic era.
    Garrels JI
    Funct Integr Genomics; 2002 Sep; 2(4-5):212-37. PubMed ID: 12192594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic graph-theoretic approach to integrate multiple predictions for the protein-protein subnetwork prediction challenge.
    Chua HN; Hugo W; Liu G; Li X; Wong L; Ng SK
    Ann N Y Acad Sci; 2009 Mar; 1158():224-33. PubMed ID: 19348644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A picture is worth a thousand words: genomics to phenomics in the yeast Saccharomyces cerevisiae.
    Vizeacoumar FJ; Chong Y; Boone C; Andrews BJ
    FEBS Lett; 2009 Jun; 583(11):1656-61. PubMed ID: 19351535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data.
    Segata N; Blanzieri E; Priami C
    J Integr Bioinform; 2008 Jan; 5(1):. PubMed ID: 20134054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex principal component and correlation structure of 16 yeast genomic variables.
    Theis FJ; Latif N; Wong P; Frishman D
    Mol Biol Evol; 2011 Sep; 28(9):2501-12. PubMed ID: 21444651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resources for integrative systems biology: from data through databases to networks and dynamic system models.
    Ng A; Bursteinas B; Gao Q; Mollison E; Zvelebil M
    Brief Bioinform; 2006 Dec; 7(4):318-30. PubMed ID: 17040977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for PPI classification.
    Urquiza JM; Rojas I; Pomares H; Herrera J; Florido JP; Valenzuela O; Cepero M
    Comput Biol Med; 2012 Jun; 42(6):639-50. PubMed ID: 22575173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.