These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

4460 related articles for article (PubMed ID: 19522529)

  • 1. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes.
    Guo K; Qian K; Zhang S; Kong J; Yu C; Liu B
    Talanta; 2011 Aug; 85(2):1174-9. PubMed ID: 21726755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.
    Teymourian H; Salimi A; Khezrian S
    Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application.
    Ping J; Wang Y; Fan K; Wu J; Ying Y
    Biosens Bioelectron; 2011 Oct; 28(1):204-9. PubMed ID: 21807494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.
    Zhou M; Shang L; Li B; Huang L; Dong S
    Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system.
    Zhou M; Guo J; Guo LP; Bai J
    Anal Chem; 2008 Jun; 80(12):4642-50. PubMed ID: 18476717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing.
    Guo S; Wen D; Zhai Y; Dong S; Wang E
    ACS Nano; 2010 Jul; 4(7):3959-68. PubMed ID: 20568706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward single-DNA electrochemical biosensing by graphene nanowalls.
    Akhavan O; Ghaderi E; Rahighi R
    ACS Nano; 2012 Apr; 6(4):2904-16. PubMed ID: 22385391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube-ionic liquid composite sensors and biosensors.
    Kachoosangi RT; Musameh MM; Abu-Yousef I; Yousef JM; Kanan SM; Xiao L; Davies SG; Russell A; Compton RG
    Anal Chem; 2009 Jan; 81(1):435-42. PubMed ID: 19117466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors.
    Kurusu F; Tsunoda H; Saito A; Tomita A; Kadota A; Kayahara N; Karube I; Gotoh M
    Analyst; 2006 Dec; 131(12):1292-8. PubMed ID: 17124536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-modified nanoporous gold-based electrochemical biosensors.
    Qiu H; Xue L; Ji G; Zhou G; Huang X; Qu Y; Gao P
    Biosens Bioelectron; 2009 Jun; 24(10):3014-8. PubMed ID: 19345571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.
    Pérez B; Del Valle M; Alegret S; Merkoçi A
    Talanta; 2007 Dec; 74(3):398-404. PubMed ID: 18371655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid.
    Mallesha M; Manjunatha R; Nethravathi C; Suresh GS; Rajamathi M; Melo JS; Venkatesha TV
    Bioelectrochemistry; 2011 Jun; 81(2):104-8. PubMed ID: 21497563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing.
    Teymourian H; Salimi A; Hallaj R
    Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
    Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L
    Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene.
    Shan C; Yang H; Han D; Zhang Q; Ivaska A; Niu L
    Biosens Bioelectron; 2010 Feb; 25(6):1504-8. PubMed ID: 20007014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of an electrochemical platform based on the self-assembly of graphene oxide-multiwall carbon nanotube nanocomposite and horseradish peroxidase: direct electrochemistry and electrocatalysis.
    Zhang Q; Yang S; Zhang J; Zhang L; Kang P; Li J; Xu J; Zhou H; Song XM
    Nanotechnology; 2011 Dec; 22(49):494010. PubMed ID: 22101607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose sensor based on an electrochemical reduced graphene oxide-poly(L-lysine) composite film modified GC electrode.
    Hua L; Wu X; Wang R
    Analyst; 2012 Dec; 137(24):5716-9. PubMed ID: 23082313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically-modified graphenes for oxidation of DNA bases: analytical parameters.
    Goh MS; Bonanni A; Ambrosi A; Sofer Z; Pumera M
    Analyst; 2011 Nov; 136(22):4738-44. PubMed ID: 21956120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CVD graphene electrochemistry: biologically relevant molecules.
    Brownson DA; Gómez-Mingot M; Banks CE
    Phys Chem Chem Phys; 2011 Dec; 13(45):20284-8. PubMed ID: 21989626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 223.