These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 195228)
21. The different effects of D-600 (methoxyverapamil) on the release of adrenal catecholamines induced by acetylcholine, high potassium or sodium deprivation. Pinto JE; Trifaró JM Br J Pharmacol; 1976 May; 57(1):127-32. PubMed ID: 1276531 [TBL] [Abstract][Full Text] [Related]
22. Enhanced cAMP production mediates the stimulatory action of pituitary adenylate cyclase activating polypeptide (PACAP) on in vitro catecholamine secretion from bovine adrenal chromaffin cells. Perrin D; Germeshausen A; Söling HD; Wuttke W; Jarry H Exp Clin Endocrinol Diabetes; 1995; 103(2):81-7. PubMed ID: 7553079 [TBL] [Abstract][Full Text] [Related]
23. Effect of trifluoperazine on catecholamine secretion by isolated bovine adrenal medullary chromaffin cells. Brooks JC; Treml S Biochem Pharmacol; 1983 Jan; 32(2):371-3. PubMed ID: 6870962 [No Abstract] [Full Text] [Related]
24. CCCP enhances catecholamine release from the perfused rat adrenal medulla. Lim DY; Park HG; Miwa S Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015 [TBL] [Abstract][Full Text] [Related]
25. Role of atrial natriuretic peptide on calcium channel mechanisms involved in catecholamine release from bovine adrenal medulla. Fernandez BE; Dominguez AE; Gonzalez MA; Okobori R Arch Int Pharmacodyn Ther; 1992; 316():105-13. PubMed ID: 1326931 [TBL] [Abstract][Full Text] [Related]
26. Analysis of the inhibitory effect of verapamil on adrenal medullary secretion. Arqueros L; Daniels AJ Life Sci; 1978 Dec; 23(24):2415-21. PubMed ID: 745521 [No Abstract] [Full Text] [Related]
27. Cyclic AMP inhibits secretion from bovine adrenal chromaffin cells evoked by carbamylcholine but not by high K+. Baker EM; Cheek TR; Burgoyne RD Biochim Biophys Acta; 1985 Sep; 846(3):388-93. PubMed ID: 2994751 [TBL] [Abstract][Full Text] [Related]
28. Stimulatory effect of pituitary adenylate cyclase-activating polypeptide on catecholamine synthesis in cultured bovine adrenal chromaffin cells: involvements of tyrosine hydroxylase phosphorylation caused by Ca2+ influx and cAMP. Houchi H; Hamano S; Masuda Y; Ishimura Y; Azuma M; Ohuchi T; Oka M Jpn J Pharmacol; 1994 Nov; 66(3):323-30. PubMed ID: 7869619 [TBL] [Abstract][Full Text] [Related]
29. Dopaminergic inhibition of catecholamine secretion from chromaffin cells: evidence that inhibition is mediated by D4 and D5 dopamine receptors. Dahmer MK; Senogles SE J Neurochem; 1996 Jan; 66(1):222-32. PubMed ID: 8522958 [TBL] [Abstract][Full Text] [Related]
30. Potentiation of evoked adrenal catecholamine release by cyanide: possible role of calcium. Borowitz JL; Born GS; Isom GE Toxicology; 1988 Jun; 50(1):37-45. PubMed ID: 3388429 [TBL] [Abstract][Full Text] [Related]
31. Inhibition of nicotinic acetylcholine receptor-mediated secretion and synthesis of catecholamines by sea urchin toxin in cultured bovine adrenal medullary cells. Nakagawa H; Yanagihara N; Izumi F; Wada A; Kimura A Biochem Pharmacol; 1992 Nov; 44(9):1779-85. PubMed ID: 1280435 [TBL] [Abstract][Full Text] [Related]
32. Opposite effect of PGE2 on cAMP levels in human adrenal medulla and pheochromocytoma. Boonyaviroj P; Gutman Y Experientia; 1977 Aug; 33(8):1113-4. PubMed ID: 196898 [TBL] [Abstract][Full Text] [Related]
33. Mechanism of the effect of droperidol to induce catecholamine efflux from the adrenal medulla. Sumikawa K; Hirano H; Amakata Y; Kashimoto T; Wada A; Izumi F Anesthesiology; 1985 Jan; 62(1):17-22. PubMed ID: 3966665 [TBL] [Abstract][Full Text] [Related]
34. Duration of catecholamine release from bovine adrenal medulla. Borowitz JL Am J Physiol; 1971 May; 220(5):1194-8. PubMed ID: 5574636 [No Abstract] [Full Text] [Related]
36. Activation of adrenal medullary L-arginine: nitric oxide pathway by stimuli which induce the release of catecholamines. Moro MA; Michelena P; Sánchez-García P; Palmer R; Moncada S; García AG Eur J Pharmacol; 1993 Aug; 246(3):213-8. PubMed ID: 7693497 [TBL] [Abstract][Full Text] [Related]
37. Analysis of the role of cyclic adenosine 3',5'-monophosphate in catecholamine release. Jaanus SD; Rubin RP J Physiol; 1974 Mar; 237(2):465-76. PubMed ID: 4363455 [TBL] [Abstract][Full Text] [Related]
38. Effects of nicotinic and muscarinic stimulation on calcium flux and catecholamine release in isolated bovine adrenal medullary cells. Isosaki M Tokushima J Exp Med; 1982 Dec; 29(3-4):155-61. PubMed ID: 7170718 [No Abstract] [Full Text] [Related]
39. The subcellular localization of calmodulin, cyclic AMP phosphodiesterase, and adenylate cyclase in bovine adrenal medulla. Tirrell JG; Coffee CJ Arch Biochem Biophys; 1983 Apr; 222(2):380-8. PubMed ID: 6303221 [TBL] [Abstract][Full Text] [Related]
40. Coordinate and differential regulation of phenylethanolamine N-methyltransferase, tyrosine hydroxylase and proenkephalin mRNAs by neural and hormonal mechanisms in cultured bovine adrenal medullary cells. Stachowiak MK; Hong JS; Viveros OH Brain Res; 1990 Mar; 510(2):277-88. PubMed ID: 1970506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]