BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

645 related articles for article (PubMed ID: 19523026)

  • 1. Finite element stress analysis of diastema closure with ceramic laminate veneers.
    Chander NG; Padmanabhan TV
    J Prosthodont; 2009 Oct; 18(7):577-81. PubMed ID: 19523026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interdental design of porcelain veneers in the presence of composite fillings: finite element analysis of composite shrinkage and thermal stresses.
    Magne P; Douglas WH
    Int J Prosthodont; 2000; 13(2):117-24. PubMed ID: 11203619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of die spacer thickness on shear bond strength of porcelain laminate veneers.
    Cho SH; Chang WG; Lim BS; Lee YK
    J Prosthet Dent; 2006 Mar; 95(3):201-8. PubMed ID: 16543017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design optimization and evolution of bonded ceramics for the anterior dentition: a finite-element analysis.
    Magne P; Douglas WH
    Quintessence Int; 1999 Oct; 30(10):661-72. PubMed ID: 10765850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of tooth preparation design on the stress distribution in maxillary central incisors restored by means of alumina porcelain veneers: a 3D-finite element analysis.
    Zarone F; Apicella D; Sorrentino R; Ferro V; Aversa R; Apicella A
    Dent Mater; 2005 Dec; 21(12):1178-88. PubMed ID: 16098574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the biomechanical behavior of maxillary central incisors restored by means of endocrowns compared to a natural tooth: a 3D static linear finite elements analysis.
    Zarone F; Sorrentino R; Apicella D; Valentino B; Ferrari M; Aversa R; Apicella A
    Dent Mater; 2006 Nov; 22(11):1035-44. PubMed ID: 16406084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of different post design and composition on stress distribution in maxillary central incisor: Finite element analysis.
    Silva NR; Castro CG; Santos-Filho PC; Silva GR; Campos RE; Soares PV; Soares CJ
    Indian J Dent Res; 2009; 20(2):153-8. PubMed ID: 19553714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress distribution in molars restored with inlays or onlays with or without endodontic treatment: a three-dimensional finite element analysis.
    Jiang W; Bo H; Yongchun G; LongXing N
    J Prosthet Dent; 2010 Jan; 103(1):6-12. PubMed ID: 20105674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress analysis of metal-free polymer crowns using the three-dimensional finite element method.
    Nakamura T; Imanishi A; Kashima H; Ohyama T; Ishigaki S
    Int J Prosthodont; 2001; 14(5):401-5. PubMed ID: 12066632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of macro- and micro-mechanics of a ceramic veneer bonded with various cement thicknesses using the typical and submodeling finite element approaches.
    Liu HL; Lin CL; Sun MT; Chang YH
    J Dent; 2009 Feb; 37(2):141-8. PubMed ID: 19084316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longevity and failure load of ceramic veneers with different preparation designs after exposure to masticatory simulation.
    Stappert CF; Ozden U; Gerds T; Strub JR
    J Prosthet Dent; 2005 Aug; 94(2):132-9. PubMed ID: 16046967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Stress analysis of porcelain laminate veneers. (1)].
    Oono K; Omura Y; Uehara K; Teramura T; Nemoto H; Murata Y; Iwai H
    Nichidai Koko Kagaku; 1990 Jun; 16(2):294-301. PubMed ID: 2135615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incisal-edge strength of porcelain laminate veneers restoring mandibular incisors.
    Wall JG; Reisbick MH; Johnston WM
    Int J Prosthodont; 1992; 5(5):441-6. PubMed ID: 1290573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis studies of a metal-ceramic crown on a first premolar tooth.
    Proos KA; Swain MV; Ironside J; Steven GP
    Int J Prosthodont; 2002; 15(6):521-7. PubMed ID: 12475155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of luting composite shrinkage and thermal loads on the stress distribution in porcelain laminate veneers.
    Magne P; Versluis A; Douglas WH
    J Prosthet Dent; 1999 Mar; 81(3):335-44. PubMed ID: 10050123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part II: strain measurement and stress distribution.
    Soares PV; Santos-Filho PC; Gomide HA; Araujo CA; Martins LR; Soares CJ
    J Prosthet Dent; 2008 Feb; 99(2):114-22. PubMed ID: 18262012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of dowel design and load direction on dowel-and-core restorations.
    Yang HS; Lang LA; Molina A; Felton DA
    J Prosthet Dent; 2001 Jun; 85(6):558-67. PubMed ID: 11404756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porcelain veneers: dentin bonding optimization and biomimetic recovery of the crown.
    Magne P; Douglas WH
    Int J Prosthodont; 1999; 12(2):111-21. PubMed ID: 10371912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evaluation of stress patterns in porcelain laminate veneers with different restoration designs and loading angles induced by functional loads: A three-dimensional finite element analysis study.
    Ustun O; Ozturk AN
    Niger J Clin Pract; 2018 Mar; 21(3):337-342. PubMed ID: 29519983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis.
    Ding X; Zhu XH; Liao SH; Zhang XH; Chen H
    J Prosthodont; 2009 Jul; 18(5):393-402. PubMed ID: 19374710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.