These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 19523098)

  • 1. Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans.
    Kamibayashi K; Nakajima T; Takahashi M; Akai M; Nakazawa K
    Eur J Neurosci; 2009 Jul; 30(1):100-9. PubMed ID: 19523098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in input-output relations in the corticospinal pathway to the lower limb muscles during robot-assisted passive stepping.
    Kamibayashi K; Nakajima T; Takahashi M; Nakazawa K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4140-4. PubMed ID: 22255251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load-related modulation of cutaneous reflexes in the tibialis anterior muscle during passive walking in humans.
    Nakajima T; Kamibayashi K; Takahashi M; Komiyama T; Akai M; Nakazawa K
    Eur J Neurosci; 2008 Mar; 27(6):1566-76. PubMed ID: 18364029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticospinal excitability during walking in humans with absent and partial body weight support.
    Knikou M; Hajela N; Mummidisetty CK
    Clin Neurophysiol; 2013 Dec; 124(12):2431-8. PubMed ID: 23810634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C
    J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability.
    Bakker M; Overeem S; Snijders AH; Borm G; van Elswijk G; Toni I; Bloem BR
    Clin Neurophysiol; 2008 Nov; 119(11):2519-27. PubMed ID: 18838294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The influence of afferent inputs from the foot load receptors onto spinal alpha-motoneurons excitability in air-stepping condition].
    Selionov VA; Solopova IA
    Fiziol Cheloveka; 2011; 37(2):133-7. PubMed ID: 21542329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential modulation of spinal and corticospinal excitability during drop jumps.
    Taube W; Leukel C; Schubert M; Gruber M; Rantalainen T; Gollhofer A
    J Neurophysiol; 2008 Mar; 99(3):1243-52. PubMed ID: 18199811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical and spinal excitability changes after robotic gait training in healthy participants.
    Blicher JU; Nielsen JF
    Neurorehabil Neural Repair; 2009 Feb; 23(2):143-9. PubMed ID: 19047360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of corticospinal excitability related to the forearm muscle during robot-assisted stepping in humans.
    Kitamura T; Masugi Y; Yamamoto SI; Ogata T; Kawashima N; Nakazawa K
    Exp Brain Res; 2023 Apr; 241(4):1089-1100. PubMed ID: 36928923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in corticospinal excitability of limb and trunk muscles according to maintenance of neck flexion.
    Fujiwara K; Tomita H; Kunita K
    Neurosci Lett; 2009 Sep; 461(3):235-9. PubMed ID: 19545609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The influence of vibration on spinal alpha-motoneurons excitability in static conditions and during evoked stepping in human].
    Solopova IA; Selionov VA
    Fiziol Cheloveka; 2012; 38(2):57-65. PubMed ID: 22679797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive stimulation of human corticospinal axons innervating leg muscles.
    Martin PG; Butler JE; Gandevia SC; Taylor JL
    J Neurophysiol; 2008 Aug; 100(2):1080-6. PubMed ID: 18509069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote facilitation of supraspinal motor excitability depends on the level of effort.
    Tazoe T; Sakamoto M; Nakajima T; Endoh T; Shiozawa S; Komiyama T
    Eur J Neurosci; 2009 Oct; 30(7):1297-305. PubMed ID: 19769593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phasic spike-timing-dependent plasticity of human motor cortex during walking.
    Prior MM; Stinear JW
    Brain Res; 2006 Sep; 1110(1):150-8. PubMed ID: 16887105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL; Gorassini MA
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of sustained excitability of the leg motor cortex after transcranial magnetic stimulation in associative plasticity.
    Roy FD; Norton JA; Gorassini MA
    J Neurophysiol; 2007 Aug; 98(2):657-67. PubMed ID: 17537908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.