BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 19523473)

  • 1. The role of decorated SDS micelles in sub-CMC protein denaturation and association.
    Andersen KK; Oliveira CL; Larsen KL; Poulsen FM; Callisen TH; Westh P; Pedersen JS; Otzen D
    J Mol Biol; 2009 Aug; 391(1):207-26. PubMed ID: 19523473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SDS-induced fibrillation of alpha-synuclein: an alternative fibrillation pathway.
    Giehm L; Oliveira CL; Christiansen G; Pedersen JS; Otzen DE
    J Mol Biol; 2010 Aug; 401(1):115-33. PubMed ID: 20540950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic study of bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) interactions by surface tension and small angle X-ray scattering.
    Santos SF; Zanette D; Fischer H; Itri R
    J Colloid Interface Sci; 2003 Jun; 262(2):400-8. PubMed ID: 16256620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How chain length and charge affect surfactant denaturation of acyl coenzyme A binding protein (ACBP).
    Andersen KK; Otzen DE
    J Phys Chem B; 2009 Oct; 113(42):13942-52. PubMed ID: 19788195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bovine serum albumin (BSA) plays a role in the size of SDS micelle-like aggregates at the saturation binding: the ionic strength effect.
    Shweitzer B; Zanette D; Itri R
    J Colloid Interface Sci; 2004 Sep; 277(2):285-91. PubMed ID: 15341837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitin forms conventional decorated micelle structures with sodium dodecyl sulfate at saturation.
    Mortensen HG; Otzen DE; Pedersen JS
    J Colloid Interface Sci; 2021 Aug; 596():233-244. PubMed ID: 33845230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of cellulase with sodium dodecyl sulfate at critical micelle concentration level.
    Xiang J; Fan JB; Chen N; Chen J; Liang Y
    Colloids Surf B Biointerfaces; 2006 May; 49(2):175-80. PubMed ID: 16632334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-angle X-ray scattering and electron paramagnetic resonance study of the interaction of bovine serum albumin with ionic surfactants.
    Gelamo EL; Itri R; Alonso A; da Silva JV; Tabak M
    J Colloid Interface Sci; 2004 Sep; 277(2):471-82. PubMed ID: 15341861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of sodium dodecyl sulfate and hexaethylene glycol mono-n-dodecyl ether to the block copolymer L64: electromotive force, microcalorimetry, surface tension, and small angle neutron scattering investigations of mixed micelles and polymer/micellar surfactant complexes.
    Couderc-Azouani S; Sidhu J; Thurn T; Xu R; Bloor DM; Penfold J; Holzwarth JF; Wyn-Jones E
    Langmuir; 2005 Oct; 21(22):10197-208. PubMed ID: 16229545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helical structure of dermaseptin B2 in a membrane-mimetic environment.
    Lequin O; Bruston F; Convert O; Chassaing G; Nicolas P
    Biochemistry; 2003 Sep; 42(34):10311-23. PubMed ID: 12939161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small-angle X-ray scattering study of the structure of lysozyme-sodium dodecyl sulfate complexes.
    Narayanan J; Abdul Rasheed AS; Bellare JR
    J Colloid Interface Sci; 2008 Dec; 328(1):67-72. PubMed ID: 18829038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of heat-induced beta-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate.
    Jung JM; Savin G; Pouzot M; Schmitt C; Mezzenga R
    Biomacromolecules; 2008 Sep; 9(9):2477-86. PubMed ID: 18698816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unfolding and folding pathway of lysozyme induced by sodium dodecyl sulfate.
    Sun Y; Filho PL; Bozelli JC; Carvalho J; Schreier S; Oliveira CL
    Soft Matter; 2015 Oct; 11(39):7769-77. PubMed ID: 26308474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorpromazine and sodium dodecyl sulfate mixed micelles investigated by small angle X-ray scattering.
    Caetano W; Gelamo EL; Tabak M; Itri R
    J Colloid Interface Sci; 2002 Apr; 248(1):149-57. PubMed ID: 16290516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global study of myoglobin-surfactant interactions.
    Andersen KK; Westh P; Otzen DE
    Langmuir; 2008 Jan; 24(2):399-407. PubMed ID: 18069862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics study of ACBP denaturation in alkyl sulfates demonstrates possible pathways of unfolding through fused surfactant clusters.
    Poghosyan AH; Schafer NP; Lyngsø J; Shahinyan AA; Pedersen JS; Otzen DE
    Protein Eng Des Sel; 2019 Dec; 32(4):175-190. PubMed ID: 31788684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SDS micelles as a membrane-mimetic environment for transmembrane segments.
    Tulumello DV; Deber CM
    Biochemistry; 2009 Dec; 48(51):12096-103. PubMed ID: 19921933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do surfactants unfold and refold proteins?
    Otzen DE; Pedersen JN; Rasmussen HØ; Pedersen JS
    Adv Colloid Interface Sci; 2022 Oct; 308():102754. PubMed ID: 36027673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of SDS-induced protein denaturation.
    Bhuyan AK
    Biopolymers; 2010 Feb; 93(2):186-99. PubMed ID: 19802818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myoglobin and α-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS.
    Mortensen HG; Madsen JK; Andersen KK; Vosegaard T; Deen GR; Otzen DE; Pedersen JS
    Biophys J; 2017 Dec; 113(12):2621-2633. PubMed ID: 29262357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.