These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 19523646)

  • 1. Comparative study of thiol-free amphiphilic hyperbranched and linear polymers for the stabilization of large gold nanoparticles in organic solvent.
    Tang Q; Cheng F; Lou XL; Liu HJ; Chen Y
    J Colloid Interface Sci; 2009 Sep; 337(2):485-91. PubMed ID: 19523646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules.
    Merican Z; Schiller TL; Hawker CJ; Fredericks PM; Blakey I
    Langmuir; 2007 Oct; 23(21):10539-45. PubMed ID: 17824719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery.
    Chen S; Zhang XZ; Cheng SX; Zhuo RX; Gu ZW
    Biomacromolecules; 2008 Oct; 9(10):2578-85. PubMed ID: 18665638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular uptake of densely packed polymer coatings on gold nanoparticles.
    Liang M; Lin IC; Whittaker MR; Minchin RF; Monteiro MJ; Toth I
    ACS Nano; 2010 Jan; 4(1):403-13. PubMed ID: 19947583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible assembly and disassembly of gold nanoparticles directed by a zwitterionic polymer.
    Ding Y; Xia XH; Zhai HS
    Chemistry; 2007; 13(15):4197-202. PubMed ID: 17236228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple protocol to stabilize gold nanoparticles using amphiphilic block copolymers: stability studies and viable cellular uptake.
    Rahme K; Vicendo P; Ayela C; Gaillard C; Payré B; Mingotaud C; Gauffre F
    Chemistry; 2009 Oct; 15(42):11151-9. PubMed ID: 19768714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolayers and multilayers of conjugated polymers as nanosized electronic components.
    Zotti G; Vercelli B; Berlin A
    Acc Chem Res; 2008 Sep; 41(9):1098-109. PubMed ID: 18570441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis.
    Kumar SS; Kumar CS; Mathiyarasu J; Phani KL
    Langmuir; 2007 Mar; 23(6):3401-8. PubMed ID: 17284059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of gold nanoparticles with tetracyanoquinoidal molecules. Spectrophotometric determination of the Au0 content of gold nanoparticles.
    Zotti G; Vercelli B; Berlin A
    Anal Chem; 2008 Feb; 80(3):815-8. PubMed ID: 18183962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of densely polymer-coated gold nanoparticles with epithelial Caco-2 monolayers.
    Lin IC; Liang M; Liu TY; Ziora ZM; Monteiro MJ; Toth I
    Biomacromolecules; 2011 Apr; 12(4):1339-48. PubMed ID: 21384908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell Au nanoparticle formation with DNA-polymer hybrid coatings using aqueous ATRP.
    Lou X; Wang C; He L
    Biomacromolecules; 2007 May; 8(5):1385-90. PubMed ID: 17465524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulation and controlled release of a hydrophobic drug using a novel nanoparticle-forming hyperbranched polyester.
    Zou J; Shi W; Wang J; Bo J
    Macromol Biosci; 2005 Jul; 5(7):662-8. PubMed ID: 16001454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphiphilic Janus gold nanoparticles via combining "solid-state grafting-to" and "grafting-from" methods.
    Wang B; Li B; Zhao B; Li CY
    J Am Chem Soc; 2008 Sep; 130(35):11594-5. PubMed ID: 18693735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-soluble gold nanoparticles protected by fluorinated amphiphilic thiolates.
    Gentilini C; Evangelista F; Rudolf P; Franchi P; Lucarini M; Pasquato L
    J Am Chem Soc; 2008 Nov; 130(46):15678-82. PubMed ID: 18950162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of freeze-thawing on lipid bilayer-protected gold nanoparticles.
    Zhang L; Li P; Li D; Guo S; Wang E
    Langmuir; 2008 Apr; 24(7):3407-11. PubMed ID: 18278967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution.
    Zhang S; Leem G; Srisombat LO; Lee TR
    J Am Chem Soc; 2008 Jan; 130(1):113-20. PubMed ID: 18072768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-responsive amphiphilic gold nanoparticles (AuNPs) protected by poly(ether amine) (PEA).
    Wen Y; Jiang X; Yin G; Yin J
    Chem Commun (Camb); 2009 Nov; (43):6595-7. PubMed ID: 19865661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using polymers to photoswitch the aggregation state of gold nanoparticles in aqueous solution.
    Housni A; Zhao Y; Zhao Y
    Langmuir; 2010 Jul; 26(14):12366-70. PubMed ID: 20545369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of linear-linear and hyperbranched-linear dental composite.
    Darmawati MY; Ismarul N; Fuad Y; Fazan F
    Med J Malaysia; 2004 May; 59 Suppl B():27-8. PubMed ID: 15468802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct electrochemistry of laccase immobilized on au nanoparticles encapsulated-dendrimer bonded conducting polymer: application for a catechin sensor.
    Rahman MA; Noh HB; Shim YB
    Anal Chem; 2008 Nov; 80(21):8020-7. PubMed ID: 18841943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.