These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 19523757)

  • 1. Chromium (III) uptake by agro-waste biosorbents: chemical characterization, sorption-desorption studies, and mechanism.
    Bernardo GR; Rene RM; Ma Catalina AD
    J Hazard Mater; 2009 Oct; 170(2-3):845-54. PubMed ID: 19523757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption kinetics of chromium(III) ions on agro-waste materials.
    Garcia-Reyes RB; Rangel-Mendez JR
    Bioresour Technol; 2010 Nov; 101(21):8099-108. PubMed ID: 20591652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption of chromium, copper and zinc by wine-processing waste sludge: single and multi-component system study.
    Liu CC; Wang MK; Chiou CS; Li YS; Yang CY; Lin YA
    J Hazard Mater; 2009 Nov; 171(1-3):386-92. PubMed ID: 19586716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.
    Vilar VJ; Botelho CM; Boaventura RA
    J Hazard Mater; 2007 Nov; 149(3):643-9. PubMed ID: 17507158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass.
    Gupta VK; Rastogi A
    J Hazard Mater; 2008 Jun; 154(1-3):347-54. PubMed ID: 18053641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of chelating ion-exchange resins for separating Cr(III) from industrial effluents.
    Cavaco SA; Fernandes S; Augusto CM; Quina MJ; Gando-Ferreira LM
    J Hazard Mater; 2009 Sep; 169(1-3):516-23. PubMed ID: 19406569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of zeolitic material synthesized from thermally treated sediment to the removal of trivalent chromium from wastewater.
    Guan Q; Wu D; Lin Y; Chen X; Wang X; Li C; He S; Kong H
    J Hazard Mater; 2009 Aug; 167(1-3):244-9. PubMed ID: 19185993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk.
    Krishnani KK; Meng X; Christodoulatos C; Boddu VM
    J Hazard Mater; 2008 May; 153(3):1222-34. PubMed ID: 18006228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions.
    Aziz A; Elandaloussi el H; Belhalfaoui B; Ouali MS; De Ménorval LC
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):192-8. PubMed ID: 19553093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grape waste as a biosorbent for removing Cr(VI) from aqueous solution.
    Chand R; Narimura K; Kawakita H; Ohto K; Watari T; Inoue K
    J Hazard Mater; 2009 Apr; 163(1):245-50. PubMed ID: 18684562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies.
    Elangovan R; Philip L; Chandraraj K
    J Hazard Mater; 2008 Mar; 152(1):100-12. PubMed ID: 17689012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum.
    Onyancha D; Mavura W; Ngila JC; Ongoma P; Chacha J
    J Hazard Mater; 2008 Oct; 158(2-3):605-14. PubMed ID: 18394792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata.
    Han X; Wong YS; Tam NF
    J Colloid Interface Sci; 2006 Nov; 303(2):365-71. PubMed ID: 16962604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of chromium and toxic ions present in mine drainage by Ectodermis of Opuntia.
    Barrera H; Ureña-Núñez F; Bilyeu B; Barrera-Díaz C
    J Hazard Mater; 2006 Aug; 136(3):846-53. PubMed ID: 16504390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste--rice straw.
    Gao H; Liu Y; Zeng G; Xu W; Li T; Xia W
    J Hazard Mater; 2008 Jan; 150(2):446-52. PubMed ID: 17574737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of Cr(III) ions by eggshells.
    Chojnacka K
    J Hazard Mater; 2005 May; 121(1-3):167-73. PubMed ID: 15885418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of Agave lechuguilla biomass for Cr(III) removal from aqueous solutions: thermodynamic studies.
    Romero-González J; Peralta-Videa JR; Rodríguez E; Delgado M; Gardea-Torresdey JL
    Bioresour Technol; 2006 Jan; 97(1):178-82. PubMed ID: 16154514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of Pb(II), Cr(III), Cu(II), As(III) to peat, and utilization of the sorption properties in industrial waste landfill hydraulic barrier layers.
    Koivula MP; Kujala K; Rönkkömäki H; Mäkelä M
    J Hazard Mater; 2009 May; 164(1):345-52. PubMed ID: 18799267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk.
    Bansal M; Garg U; Singh D; Garg VK
    J Hazard Mater; 2009 Feb; 162(1):312-20. PubMed ID: 18573603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production.
    Cui H; Fu M; Yu S; Wang MK
    J Hazard Mater; 2011 Feb; 186(2-3):1625-31. PubMed ID: 21215518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.