BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19523882)

  • 1. The DNA binding domain of human DNA ligase I interacts with both nicked DNA and the DNA sliding clamps, PCNA and hRad9-hRad1-hHus1.
    Song W; Pascal JM; Ellenberger T; Tomkinson AE
    DNA Repair (Amst); 2009 Aug; 8(8):912-9. PubMed ID: 19523882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human checkpoint protein hRad17 interacts with the PCNA-like proteins hRad1, hHus1, and hRad9.
    Rauen M; Burtelow MA; Dufault VM; Karnitz LM
    J Biol Chem; 2000 Sep; 275(38):29767-71. PubMed ID: 10884395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA ligase I, the replicative DNA ligase.
    Howes TR; Tomkinson AE
    Subcell Biochem; 2012; 62():327-41. PubMed ID: 22918593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved physical and functional interaction between the cell cycle checkpoint clamp loader and DNA ligase I of eukaryotes.
    Song W; Levin DS; Varkey J; Post S; Bermudez VP; Hurwitz J; Tomkinson AE
    J Biol Chem; 2007 Aug; 282(31):22721-30. PubMed ID: 17561505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct pools of proliferating cell nuclear antigen associated to DNA replication sites interact with the p125 subunit of DNA polymerase delta or DNA ligase I.
    Riva F; Savio M; Cazzalini O; Stivala LA; Scovassi IA; Cox LS; Ducommun B; Prosperi E
    Exp Cell Res; 2004 Feb; 293(2):357-67. PubMed ID: 14729473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex.
    Park MJ; Park JH; Hahm SH; Ko SI; Lee YR; Chung JH; Sohn SY; Cho Y; Kang LW; Han YS
    DNA Repair (Amst); 2009 Oct; 8(10):1190-200. PubMed ID: 19615952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining.
    Levin DS; Bai W; Yao N; O'Donnell M; Tomkinson AE
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12863-8. PubMed ID: 9371766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential switching of binding partners on PCNA during in vitro Okazaki fragment maturation.
    Dovrat D; Stodola JL; Burgers PM; Aharoni A
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14118-23. PubMed ID: 25228764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CTG/CAG repeat instability is modulated by the levels of human DNA ligase I and its interaction with proliferating cell nuclear antigen: a distinction between replication and slipped-DNA repair.
    López Castel A; Tomkinson AE; Pearson CE
    J Biol Chem; 2009 Sep; 284(39):26631-45. PubMed ID: 19628465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of stimulation of human DNA ligase I by the Rad9-rad1-Hus1 checkpoint complex.
    Wang W; Lindsey-Boltz LA; Sancar A; Bambara RA
    J Biol Chem; 2006 Jul; 281(30):20865-20872. PubMed ID: 16731526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human hRad1 but not hRad9 protects hHus1 from ubiquitin-proteasomal degradation.
    Hirai I; Sasaki T; Wang HG
    Oncogene; 2004 Jul; 23(30):5124-30. PubMed ID: 15122316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proliferating cell nuclear antigen interacts with the CRL4 ubiquitin ligase subunit CDT2 in DNA synthesis-induced degradation of CDT1.
    Leng F; Saxena L; Hoang N; Zhang C; Lee L; Li W; Gong X; Lu F; Sun H; Zhang H
    J Biol Chem; 2018 Dec; 293(49):18879-18889. PubMed ID: 30301766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and functional implications of the human rad9-hus1-rad1 cell cycle checkpoint complex.
    Xu M; Bai L; Gong Y; Xie W; Hang H; Jiang T
    J Biol Chem; 2009 Jul; 284(31):20457-61. PubMed ID: 19535328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA ligase and PCNA: Double-ring down to seal a break in DNA.
    Aihara H
    Structure; 2022 Mar; 30(3):324-326. PubMed ID: 35245433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase.
    Vijayakumar S; Chapados BR; Schmidt KH; Kolodner RD; Tainer JA; Tomkinson AE
    Nucleic Acids Res; 2007; 35(5):1624-37. PubMed ID: 17308348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM structures and biochemical insights into heterotrimeric PCNA regulation of DNA ligase.
    Sverzhinsky A; Tomkinson AE; Pascal JM
    Structure; 2022 Mar; 30(3):371-385.e5. PubMed ID: 34838188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single amino acid substitution in the DNA-binding domain of Aeropyrum pernix DNA ligase impairs its interaction with proliferating cell nuclear antigen.
    Kiyonari S; Kamigochi T; Ishino Y
    Extremophiles; 2007 Sep; 11(5):675-84. PubMed ID: 17487442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA.
    Pascal JM; Tsodikov OV; Hura GL; Song W; Cotner EA; Classen S; Tomkinson AE; Tainer JA; Ellenberger T
    Mol Cell; 2006 Oct; 24(2):279-91. PubMed ID: 17052461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of human Lig1 regulation by PCNA in Okazaki fragment sealing.
    Blair K; Tehseen M; Raducanu VS; Shahid T; Lancey C; Rashid F; Crehuet R; Hamdan SM; De Biasio A
    Nat Commun; 2022 Dec; 13(1):7833. PubMed ID: 36539424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of human DNA ligase I regulates its interaction with replication factor C and its participation in DNA replication and DNA repair.
    Vijayakumar S; Dziegielewska B; Levin DS; Song W; Yin J; Yang A; Matsumoto Y; Bermudez VP; Hurwitz J; Tomkinson AE
    Mol Cell Biol; 2009 Apr; 29(8):2042-52. PubMed ID: 19223468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.