These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1142 related articles for article (PubMed ID: 19524017)
1. Site directed processing: role of amino acid sequences and glycosylation of acceptor glycopeptides in the assembly of extended mucin type O-glycan core 2. Brockhausen I; Dowler T; Paulsen H Biochim Biophys Acta; 2009 Oct; 1790(10):1244-57. PubMed ID: 19524017 [TBL] [Abstract][Full Text] [Related]
2. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Wandall HH; Irazoqui F; Tarp MA; Bennett EP; Mandel U; Takeuchi H; Kato K; Irimura T; Suryanarayanan G; Hollingsworth MA; Clausen H Glycobiology; 2007 Apr; 17(4):374-87. PubMed ID: 17215257 [TBL] [Abstract][Full Text] [Related]
3. Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Brockhausen I; Toki D; Brockhausen J; Peters S; Bielfeldt T; Kleen A; Paulsen H; Meldal M; Hagen F; Tabak LA Glycoconj J; 1996 Oct; 13(5):849-56. PubMed ID: 8910012 [TBL] [Abstract][Full Text] [Related]
4. Unexpected tolerance of glycosylation by UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase revealed by electron capture dissociation mass spectrometry: carbohydrate as potential protective groups. Yoshimura Y; Matsushita T; Fujitani N; Takegawa Y; Fujihira H; Naruchi K; Gao XD; Manri N; Sakamoto T; Kato K; Hinou H; Nishimura S Biochemistry; 2010 Jul; 49(28):5929-41. PubMed ID: 20540529 [TBL] [Abstract][Full Text] [Related]
5. Glycopeptide-preferring polypeptide GalNAc transferase 10 (ppGalNAc T10), involved in mucin-type O-glycosylation, has a unique GalNAc-O-Ser/Thr-binding site in its catalytic domain not found in ppGalNAc T1 or T2. Perrine CL; Ganguli A; Wu P; Bertozzi CR; Fritz TA; Raman J; Tabak LA; Gerken TA J Biol Chem; 2009 Jul; 284(30):20387-97. PubMed ID: 19460755 [TBL] [Abstract][Full Text] [Related]
6. An efficient approach for the characterization of mucin-type glycopeptides: the effect of O-glycosylation on the conformation of synthetic mucin peptides. Hashimoto R; Fujitani N; Takegawa Y; Kurogochi M; Matsushita T; Naruchi K; Ohyabu N; Hinou H; Gao XD; Manri N; Satake H; Kaneko A; Sakamoto T; Nishimura S Chemistry; 2011 Feb; 17(8):2393-404. PubMed ID: 21264968 [TBL] [Abstract][Full Text] [Related]
7. Control of mucin synthesis: the peptide portion of synthetic O-glycopeptide substrates influences the activity of O-glycan core 1 UDPgalactose:N-acetyl-alpha-galactosaminyl-R beta 3-galactosyltransferase. Brockhausen I; Möller G; Merz G; Adermann K; Paulsen H Biochemistry; 1990 Nov; 29(44):10206-12. PubMed ID: 2125490 [TBL] [Abstract][Full Text] [Related]
8. UDPgalactose:glycoprotein-N-acetyl-D-galactosamine 3-beta-D-galactosyltransferase activity synthesizing O-glycan core 1 is controlled by the amino acid sequence and glycosylation of glycopeptide substrates. Granovsky M; Bielfeldt T; Peters S; Paulsen H; Meldal M; Brockhausen J; Brockhausen I Eur J Biochem; 1994 May; 221(3):1039-46. PubMed ID: 8181460 [TBL] [Abstract][Full Text] [Related]
9. Dynamic epigenetic regulation of initial O-glycosylation by UDP-N-Acetylgalactosamine:Peptide N-acetylgalactosaminyltransferases. site-specific glycosylation of MUC1 repeat peptide influences the substrate qualities at adjacent or distant Ser/Thr positions. Hanisch FG; Müller S; Hassan H; Clausen H; Zachara N; Gooley AA; Paulsen H; Alving K; Peter-Katalinic J J Biol Chem; 1999 Apr; 274(15):9946-54. PubMed ID: 10187769 [TBL] [Abstract][Full Text] [Related]
10. Evidence for glycosylation-dependent activities of polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 on mucin glycopeptides. Hanisch FG; Reis CA; Clausen H; Paulsen H Glycobiology; 2001 Sep; 11(9):731-40. PubMed ID: 11555617 [TBL] [Abstract][Full Text] [Related]
11. Systematic determination of the peptide acceptor preferences for the human UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase). Perrine C; Ju T; Cummings RD; Gerken TA Glycobiology; 2009 Mar; 19(3):321-8. PubMed ID: 19073881 [TBL] [Abstract][Full Text] [Related]
12. The lectin domain of the polypeptide GalNAc transferase family of glycosyltransferases (ppGalNAc Ts) acts as a switch directing glycopeptide substrate glycosylation in an N- or C-terminal direction, further controlling mucin type O-glycosylation. Gerken TA; Revoredo L; Thome JJ; Tabak LA; Vester-Christensen MB; Clausen H; Gahlay GK; Jarvis DL; Johnson RW; Moniz HA; Moremen K J Biol Chem; 2013 Jul; 288(27):19900-14. PubMed ID: 23689369 [TBL] [Abstract][Full Text] [Related]
13. Conformational studies on the MUC1 tandem repeat glycopeptides: implication for the enzymatic O-glycosylation of the mucin protein core. Kinarsky L; Suryanarayanan G; Prakash O; Paulsen H; Clausen H; Hanisch FG; Hollingsworth MA; Sherman S Glycobiology; 2003 Dec; 13(12):929-39. PubMed ID: 12925576 [TBL] [Abstract][Full Text] [Related]
14. Kinetic modeling confirms the biosynthesis of mucin core 1 (beta-Gal(1-3) alpha-GalNAc-O-Ser/Thr) O-glycan structures are modulated by neighboring glycosylation effects. Gerken TA Biochemistry; 2004 Apr; 43(14):4137-42. PubMed ID: 15065856 [TBL] [Abstract][Full Text] [Related]
15. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Revoredo L; Wang S; Bennett EP; Clausen H; Moremen KW; Jarvis DL; Ten Hagen KG; Tabak LA; Gerken TA Glycobiology; 2016 Apr; 26(4):360-76. PubMed ID: 26610890 [TBL] [Abstract][Full Text] [Related]
16. The lectin domain of UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-T4 directs its glycopeptide specificities. Hassan H; Reis CA; Bennett EP; Mirgorodskaya E; Roepstorff P; Hollingsworth MA; Burchell J; Taylor-Papadimitriou J; Clausen H J Biol Chem; 2000 Dec; 275(49):38197-205. PubMed ID: 10984485 [TBL] [Abstract][Full Text] [Related]
17. Determination of the site-specific O-glycosylation pattern of the porcine submaxillary mucin tandem repeat glycopeptide. Model proposed for the polypeptide:galnac transferase peptide binding site. Gerken TA; Owens CL; Pasumarthy M J Biol Chem; 1997 Apr; 272(15):9709-19. PubMed ID: 9092502 [TBL] [Abstract][Full Text] [Related]
18. Elucidation of the sugar recognition ability of the lectin domain of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 3 by using unnatural glycopeptide substrates. Yoshimura Y; Nudelman AS; Levery SB; Wandall HH; Bennett EP; Hindsgaul O; Clausen H; Nishimura S Glycobiology; 2012 Mar; 22(3):429-38. PubMed ID: 22042768 [TBL] [Abstract][Full Text] [Related]
19. Role of peptide sequence and neighboring residue glycosylation on the substrate specificity of the uridine 5'-diphosphate-alpha-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyl transferases T1 and T2: kinetic modeling of the porcine and canine submaxillary gland mucin tandem repeats. Gerken TA; Tep C; Rarick J Biochemistry; 2004 Aug; 43(30):9888-900. PubMed ID: 15274643 [TBL] [Abstract][Full Text] [Related]
20. O-GalNAc incorporation into a cluster acceptor site of three consecutive threonines. Distinct specificity of GalNAc-transferase isoforms. Takeuchi H; Kato K; Hassan H; Clausen H; Irimura T Eur J Biochem; 2002 Dec; 269(24):6173-83. PubMed ID: 12473113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]