BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19524020)

  • 1. Transmembrane agrin regulates dendritic filopodia and synapse formation in mature hippocampal neuron cultures.
    McCroskery S; Bailey A; Lin L; Daniels MP
    Neuroscience; 2009 Sep; 163(1):168-79. PubMed ID: 19524020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane agrin regulates filopodia in rat hippocampal neurons in culture.
    McCroskery S; Chaudhry A; Lin L; Daniels MP
    Mol Cell Neurosci; 2006 Sep; 33(1):15-28. PubMed ID: 16860570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmentally regulated changes in cellular compartmentation and synaptic distribution of actin in hippocampal neurons.
    Zhang W; Benson DL
    J Neurosci Res; 2002 Aug; 69(4):427-36. PubMed ID: 12210837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering transmembrane-agrin induces filopodia-like processes on axons and dendrites.
    Annies M; Bittcher G; Ramseger R; Löschinger J; Wöll S; Porten E; Abraham C; Rüegg MA; Kröger S
    Mol Cell Neurosci; 2006 Mar; 31(3):515-24. PubMed ID: 16364653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporally distinct demands for classic cadherins in synapse formation and maturation.
    Bozdagi O; Valcin M; Poskanzer K; Tanaka H; Benson DL
    Mol Cell Neurosci; 2004 Dec; 27(4):509-21. PubMed ID: 15555928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage.
    Matsumoto-Miyai K; Sokolowska E; Zurlinden A; Gee CE; Lüscher D; Hettwer S; Wölfel J; Ladner AP; Ster J; Gerber U; Rülicke T; Kunz B; Sonderegger P
    Cell; 2009 Mar; 136(6):1161-71. PubMed ID: 19303856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of agrin, Lrp4 and MuSK during dendritic arborization and synaptogenesis in cultured embryonic CNS neurons.
    Handara G; Hetsch FJA; Jüttner R; Schick A; Haupt C; Rathjen FG; Kröger S
    Dev Biol; 2019 Jan; 445(1):54-67. PubMed ID: 30385274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal synapse formation in agrin-depleted hippocampal neurons.
    Ferreira A
    J Cell Sci; 1999 Dec; 112 ( Pt 24)():4729-38. PubMed ID: 10574720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses.
    Antar LN; Li C; Zhang H; Carroll RC; Bassell GJ
    Mol Cell Neurosci; 2006; 32(1-2):37-48. PubMed ID: 16631377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of filopodia-like protrusions by transmembrane agrin: role of agrin glycosaminoglycan chains and Rho-family GTPases.
    Lin L; McCroskery S; Ross JM; Chak Y; Neuhuber B; Daniels MP
    Exp Cell Res; 2010 Aug; 316(14):2260-77. PubMed ID: 20471381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo imaging of synapse formation on a growing dendritic arbor.
    Niell CM; Meyer MP; Smith SJ
    Nat Neurosci; 2004 Mar; 7(3):254-60. PubMed ID: 14758365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative Splicing and the Intracellular Domain Mediate TM-agrin's Ability to Differentially Regulate the Density of Excitatory and Inhibitory Synapse-like Specializations in Developing CNS Neurons.
    Handara G; Kröger S
    Neuroscience; 2019 Nov; 419():60-71. PubMed ID: 31672640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus.
    Witcher MR; Kirov SA; Harris KM
    Glia; 2007 Jan; 55(1):13-23. PubMed ID: 17001633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of drebrin A in immature neurons induces the accumulation of F-actin and PSD-95 into dendritic filopodia, and the formation of large abnormal protrusions.
    Mizui T; Takahashi H; Sekino Y; Shirao T
    Mol Cell Neurosci; 2005 Dec; 30(4):630-8. PubMed ID: 16456930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadherin-8 and N-cadherin differentially regulate pre- and postsynaptic development of the hippocampal mossy fiber pathway.
    Bekirov IH; Nagy V; Svoronos A; Huntley GW; Benson DL
    Hippocampus; 2008; 18(4):349-63. PubMed ID: 18064706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synapse-forming axons and recombinant agrin induce microprocess formation on myotubes.
    Uhm CS; Neuhuber B; Lowe B; Crocker V; Daniels MP
    J Neurosci; 2001 Dec; 21(24):9678-89. PubMed ID: 11739577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteins that promote filopodia stability, but not number, lead to more axonal-dendritic contacts.
    Arstikaitis P; Gauthier-Campbell C; Huang K; El-Husseini A; Murphy TH
    PLoS One; 2011 Mar; 6(3):e16998. PubMed ID: 21408225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission.
    Petrak LJ; Harris KM; Kirov SA
    J Comp Neurol; 2005 Apr; 484(2):183-90. PubMed ID: 15736233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contacts among non-sister dendritic branches at bifurcations shape neighboring dendrites and pattern their synaptic inputs.
    Cove J; Blinder P; Baranes D
    Brain Res; 2009 Jan; 1251():30-41. PubMed ID: 19046952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotrophin-dependent dendritic filopodial motility: a convergence on PI3K signaling.
    Luikart BW; Zhang W; Wayman GA; Kwon CH; Westbrook GL; Parada LF
    J Neurosci; 2008 Jul; 28(27):7006-12. PubMed ID: 18596174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.