These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 19524075)
1. Incorporation of ionic ligands accelerates drug release from LDI-glycerol polyurethanes. Sivak WN; Zhang J; Petoud S; Beckman EJ Acta Biomater; 2010 Jan; 6(1):144-53. PubMed ID: 19524075 [TBL] [Abstract][Full Text] [Related]
2. Catalyst-dependent drug loading of LDI-glycerol polyurethane foams leads to differing controlled release profiles. Sivak WN; Pollack IF; Petoud S; Zamboni WC; Zhang J; Beckman EJ Acta Biomater; 2008 Sep; 4(5):1263-74. PubMed ID: 18440884 [TBL] [Abstract][Full Text] [Related]
3. LDI-glycerol polyurethane implants exhibit controlled release of DB-67 and anti-tumor activity in vitro against malignant gliomas. Sivak WN; Pollack IF; Petoud S; Zamboni WC; Zhang J; Beckman EJ Acta Biomater; 2008 Jul; 4(4):852-62. PubMed ID: 18440882 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous drug release at different rates from biodegradable polyurethane foams. Sivak WN; Zhang J; Petoud S; Beckman EJ Acta Biomater; 2009 Sep; 5(7):2398-408. PubMed ID: 19398389 [TBL] [Abstract][Full Text] [Related]
5. Degradative-release as a function of drug structure from LDI-glycerol polyurethanes. Sivak WN; Zhang J; Petoud S; Beckman EJ Biomed Mater Eng; 2010; 20(5):269-81. PubMed ID: 21084739 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Sun X; Gao H; Wu G; Wang Y; Fan Y; Ma J Int J Pharm; 2011 Jun; 412(1-2):52-8. PubMed ID: 21511019 [TBL] [Abstract][Full Text] [Related]
7. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Zhou L; Liang D; He X; Li J; Tan H; Li J; Fu Q; Gu Q Biomaterials; 2012 Mar; 33(9):2734-45. PubMed ID: 22236829 [TBL] [Abstract][Full Text] [Related]
8. [Synthesis, characterization and electrospinning of biodegradable polyurethanes based on poly(epsilon-caprolactone) and L-lysine diisocynate]. Han J; Ye L; Zhang A; Feng Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1274-9. PubMed ID: 21374978 [TBL] [Abstract][Full Text] [Related]
9. Bioresorbable poly(ester-ether urethane)s from L-lysine diisocyanate and triblock copolymers with different hydrophilic character. Abraham GA; Marcos-Fernández A; Román JS J Biomed Mater Res A; 2006 Mar; 76(4):729-36. PubMed ID: 16317720 [TBL] [Abstract][Full Text] [Related]
10. A biodegradable polyurethane-ascorbic acid scaffold for bone tissue engineering. Zhang J; Doll BA; Beckman EJ; Hollinger JO J Biomed Mater Res A; 2003 Nov; 67(2):389-400. PubMed ID: 14566779 [TBL] [Abstract][Full Text] [Related]
11. Tailored drug release from biodegradable stent coatings based on hybrid polyurethanes. Guo Q; Knight PT; Mather PT J Control Release; 2009 Aug; 137(3):224-33. PubMed ID: 19376173 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828 [TBL] [Abstract][Full Text] [Related]
13. Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on L-lysine diisocyanate and L-lysine chain extender. Han J; Cao RW; Chen B; Ye L; Zhang AY; Zhang J; Feng ZG J Biomed Mater Res A; 2011 Mar; 96(4):705-14. PubMed ID: 21284079 [TBL] [Abstract][Full Text] [Related]
14. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. Eglin D; Grad S; Gogolewski S; Alini M J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318 [TBL] [Abstract][Full Text] [Related]
15. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. Derakhshandeh K; Erfan M; Dadashzadeh S Eur J Pharm Biopharm; 2007 Apr; 66(1):34-41. PubMed ID: 17070678 [TBL] [Abstract][Full Text] [Related]
16. Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite. Da Silva GR; Ayres E; Orefice RL; Moura SA; Cara DC; Cunha Ada S J Drug Target; 2009 Jun; 17(5):374-83. PubMed ID: 19555266 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Zhang Y; Zhuo RX Biomaterials; 2005 Nov; 26(33):6736-42. PubMed ID: 15935469 [TBL] [Abstract][Full Text] [Related]
18. Biostability and biological performance of a PDMS-based polyurethane for controlled drug release. Simmons A; Padsalgikar AD; Ferris LM; Poole-Warren LA Biomaterials; 2008 Jul; 29(20):2987-95. PubMed ID: 18436300 [TBL] [Abstract][Full Text] [Related]
19. Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes. Zhang C; Zhao K; Hu T; Cui X; Brown N; Boland T J Control Release; 2008 Oct; 131(2):128-36. PubMed ID: 18703098 [TBL] [Abstract][Full Text] [Related]
20. A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro. Zhang JY; Beckman EJ; Piesco NP; Agarwal S Biomaterials; 2000 Jun; 21(12):1247-58. PubMed ID: 10811306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]