These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 19524221)
1. Development of tolerant features for characterization of masses in mammograms. Rojas-Domínguez A; Nandi AK Comput Biol Med; 2009 Aug; 39(8):678-88. PubMed ID: 19524221 [TBL] [Abstract][Full Text] [Related]
2. Detection of breast masses in mammograms by density slicing and texture flow-field analysis. Mudigonda NR; Rangayyan RM; Desautels JE IEEE Trans Med Imaging; 2001 Dec; 20(12):1215-27. PubMed ID: 11811822 [TBL] [Abstract][Full Text] [Related]
3. Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization. Sahiner B; Petrick N; Chan HP; Hadjiiski LM; Paramagul C; Helvie MA; Gurcan MN IEEE Trans Med Imaging; 2001 Dec; 20(12):1275-84. PubMed ID: 11811827 [TBL] [Abstract][Full Text] [Related]
4. Improvement of mammographic mass characterization using spiculation meausures and morphological features. Sahiner B; Chan HP; Petrick N; Helvie MA; Hadjiiski LM Med Phys; 2001 Jul; 28(7):1455-65. PubMed ID: 11488579 [TBL] [Abstract][Full Text] [Related]
5. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents. Zhang J; Lo JY; Kuzmiak CM; Ghate SV; Yoon SC; Mazurowski MA Med Phys; 2014 Sep; 41(9):091907. PubMed ID: 25186394 [TBL] [Abstract][Full Text] [Related]
6. Use of border information in the classification of mammographic masses. Varela C; Timp S; Karssemeijer N Phys Med Biol; 2006 Jan; 51(2):425-41. PubMed ID: 16394348 [TBL] [Abstract][Full Text] [Related]
7. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms. Sapate SG; Mahajan A; Talbar SN; Sable N; Desai S; Thakur M Comput Methods Programs Biomed; 2018 Sep; 163():1-20. PubMed ID: 30119844 [TBL] [Abstract][Full Text] [Related]
8. A model-based framework for the detection of spiculated masses on mammography. Sampat MP; Bovik AC; Whitman GJ; Markey MK Med Phys; 2008 May; 35(5):2110-23. PubMed ID: 18561687 [TBL] [Abstract][Full Text] [Related]
9. Improved dynamic-programming-based algorithms for segmentation of masses in mammograms. Rojas Domínguez A; Nandi AK Med Phys; 2007 Nov; 34(11):4256-69. PubMed ID: 18072490 [TBL] [Abstract][Full Text] [Related]
10. Polygonal modeling of contours of breast tumors with the preservation of spicules. Guliato D; Rangayyan RM; Carvalho JD; Santiago SA IEEE Trans Biomed Eng; 2008 Jan; 55(1):14-20. PubMed ID: 18232342 [TBL] [Abstract][Full Text] [Related]
11. A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories. Vadivel A; Surendiran B Comput Biol Med; 2013 May; 43(4):259-67. PubMed ID: 23414779 [TBL] [Abstract][Full Text] [Related]
12. Boundary modelling and shape analysis methods for classification of mammographic masses. Rangayyan RM; Mudigonda NR; Desautels JE Med Biol Eng Comput; 2000 Sep; 38(5):487-96. PubMed ID: 11094803 [TBL] [Abstract][Full Text] [Related]
13. Analysis of temporal changes of mammographic features: computer-aided classification of malignant and benign breast masses. Hadjiiski L; Sahiner B; Chan HP; Petrick N; Helvie MA; Gurcan M Med Phys; 2001 Nov; 28(11):2309-17. PubMed ID: 11764038 [TBL] [Abstract][Full Text] [Related]
14. Hybrid segmentation of mass in mammograms using template matching and dynamic programming. Song E; Xu S; Xu X; Zeng J; Lan Y; Zhang S; Hung CC Acad Radiol; 2010 Nov; 17(11):1414-24. PubMed ID: 20817575 [TBL] [Abstract][Full Text] [Related]
15. Computer-aided diagnosis of mammographic microcalcification clusters. Kallergi M Med Phys; 2004 Feb; 31(2):314-26. PubMed ID: 15000617 [TBL] [Abstract][Full Text] [Related]
16. Development of intelligent systems based on Bayesian regularization network and neuro-fuzzy models for mass detection in mammograms: A comparative analysis. Mahersia H; Boulehmi H; Hamrouni K Comput Methods Programs Biomed; 2016 Apr; 126():46-62. PubMed ID: 26831269 [TBL] [Abstract][Full Text] [Related]
17. Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection. Rojas Domínguez A; Nandi AK Comput Med Imaging Graph; 2008 Jun; 32(4):304-15. PubMed ID: 18358699 [TBL] [Abstract][Full Text] [Related]
18. Automated detection of breast mass spiculation levels and evaluation of scheme performance. Jiang L; Song E; Xu X; Ma G; Zheng B Acad Radiol; 2008 Dec; 15(12):1534-44. PubMed ID: 19000870 [TBL] [Abstract][Full Text] [Related]
19. Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis. Sahiner B; Chan HP; Petrick N; Helvie MA; Goodsitt MM Med Phys; 1998 Apr; 25(4):516-26. PubMed ID: 9571620 [TBL] [Abstract][Full Text] [Related]
20. Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier. Delogu P; Evelina Fantacci M; Kasae P; Retico A Comput Biol Med; 2007 Oct; 37(10):1479-91. PubMed ID: 17383623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]