BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 19524294)

  • 21. Three-dimensional polymer scaffolds for high throughput cell-based assay systems.
    Cheng K; Lai Y; Kisaalita WS
    Biomaterials; 2008 Jun; 29(18):2802-12. PubMed ID: 18405966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical and functional changes of rat liver spheroids during spheroid formation and maintenance in culture: I. morphological maturation and kinetic changes of energy metabolism, albumin synthesis, and activities of some enzymes.
    Ma M; Xu J; Purcell WM
    J Cell Biochem; 2003 Dec; 90(6):1166-75. PubMed ID: 14635190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell distribution profiles in three-dimensional scaffolds with inverted-colloidal-crystal geometry: modeling and experimental investigations.
    Shanbhag S; Wang S; Kotov NA
    Small; 2005 Dec; 1(12):1208-14. PubMed ID: 17193421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation and manipulation of magnetic multicellular spheroids.
    Ho VH; Müller KH; Barcza A; Chen R; Slater NK
    Biomaterials; 2010 Apr; 31(11):3095-102. PubMed ID: 20045553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in three-dimensional multicellular spheroid culture for biomedical research.
    Lin RZ; Chang HY
    Biotechnol J; 2008 Oct; 3(9-10):1172-84. PubMed ID: 18566957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of salivary acinar cell spheroids in vitro above a polyvinyl alcohol-coated surface.
    Chen MH; Chen YJ; Liao CC; Chan YH; Lin CY; Chen RS; Young TH
    J Biomed Mater Res A; 2009 Sep; 90(4):1066-72. PubMed ID: 18671268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device.
    Okuyama T; Yamazoe H; Mochizuki N; Khademhosseini A; Suzuki H; Fukuda J
    J Biosci Bioeng; 2010 Nov; 110(5):572-6. PubMed ID: 20591731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model.
    Wong SF; No da Y; Choi YY; Kim DS; Chung BG; Lee SH
    Biomaterials; 2011 Nov; 32(32):8087-96. PubMed ID: 21813175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of microwell chip structure on cell microsphere production of various animal cells.
    Sakai Y; Yoshida S; Yoshiura Y; Mori R; Tamura T; Yahiro K; Mori H; Kanemura Y; Yamasaki M; Nakazawa K
    J Biosci Bioeng; 2010 Aug; 110(2):223-9. PubMed ID: 20547385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies.
    Ong SM; Zhao Z; Arooz T; Zhao D; Zhang S; Du T; Wasser M; van Noort D; Yu H
    Biomaterials; 2010 Feb; 31(6):1180-90. PubMed ID: 19889455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micropatterned organoid culture of rat hepatocytes and HepG2 cells.
    Mori R; Sakai Y; Nakazawa K
    J Biosci Bioeng; 2008 Sep; 106(3):237-42. PubMed ID: 18929998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical and functional changes of rat liver spheroids during spheroid formation and maintenance in culture: II. nitric oxide synthesis and related changes.
    Xu J; Ma M; Purcell WM
    J Cell Biochem; 2003 Dec; 90(6):1176-85. PubMed ID: 14635191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomimetic macroporous hydrogel scaffolds in a high-throughput screening format for cell-based assays.
    Dainiak MB; Savina IN; Musolino I; Kumar A; Mattiasson B; Galaev IY
    Biotechnol Prog; 2008; 24(6):1373-83. PubMed ID: 19194952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures.
    Fukuda J; Khademhosseini A; Yeo Y; Yang X; Yeh J; Eng G; Blumling J; Wang CF; Kohane DS; Langer R
    Biomaterials; 2006 Oct; 27(30):5259-67. PubMed ID: 16814859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional three-dimensional HepG2 aggregate cultures generated from an ultrasound trap: comparison with HepG2 spheroids.
    Liu J; Kuznetsova LA; Edwards GO; Xu J; Ma M; Purcell WM; Jackson SK; Coakley WT
    J Cell Biochem; 2007 Dec; 102(5):1180-9. PubMed ID: 17440959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing.
    Yip D; Cho CH
    Biochem Biophys Res Commun; 2013 Apr; 433(3):327-32. PubMed ID: 23501105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering.
    Kubinová S; Horák D; Syková E
    Biomaterials; 2009 Sep; 30(27):4601-9. PubMed ID: 19500833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation.
    Yoshii Y; Waki A; Yoshida K; Kakezuka A; Kobayashi M; Namiki H; Kuroda Y; Kiyono Y; Yoshii H; Furukawa T; Asai T; Okazawa H; Gelovani JG; Fujibayashi Y
    Biomaterials; 2011 Sep; 32(26):6052-8. PubMed ID: 21640378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-dimensional multiarray formation of hepatocyte spheroids on a microfabricated PEG-brush surface.
    Otsuka H; Hirano A; Nagasaki Y; Okano T; Horiike Y; Kataoka K
    Chembiochem; 2004 Jun; 5(6):850-5. PubMed ID: 15174169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell proliferation and migration in silk fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 May; 30(15):2956-65. PubMed ID: 19249094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.