These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19524308)

  • 1. Antioxidant responses in the polar marine sea-ice amphipod Gammarus wilkitzkii to natural and experimentally increased UV levels.
    Krapp RH; Baussant T; Berge J; Pampanin DM; Camus L
    Aquat Toxicol; 2009 Aug; 94(1):1-7. PubMed ID: 19524308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular energy allocation in the Arctic sea ice amphipod Gammarus wilkitzkii exposed to the water soluble fractions of oil.
    Olsen GH; Carroll J; Sva E; Camus L
    Mar Environ Res; 2008 Jul; 66(1):213-4. PubMed ID: 18381222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total oxyradical scavenging capacity of the deep-sea amphipod Eurythenes gryllus.
    Camus L; Gulliksen B
    Mar Environ Res; 2004; 58(2-5):615-8. PubMed ID: 15178088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embryo aberrations in sea ice amphipod Gammarus wilkitzkii exposed to water soluble fraction of oil.
    Camus L; Olsen GH
    Mar Environ Res; 2008 Jul; 66(1):221-2. PubMed ID: 18423572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant efficiency in early life stages of the Antarctic silverfish, Pleuragramma antarcticum: responsiveness to pro-oxidant conditions of platelet ice and chemical exposure.
    Regoli F; Nigro M; Benedetti M; Fattorini D; Gorbi S
    Aquat Toxicol; 2005 Oct; 75(1):43-52. PubMed ID: 16087253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation.
    Lister KN; Lamare MD; Burritt DJ
    J Exp Biol; 2010 Jun; 213(11):1967-75. PubMed ID: 20472784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and stress protein responses to the UV filter 3-benzylidene camphor in the amphipod crustacean Gammarus fossarum (Koch 1835).
    Scheil V; Triebskorn R; Köhler HR
    Arch Environ Contam Toxicol; 2008 May; 54(4):684-9. PubMed ID: 17985174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crustacea in Arctic and Antarctic sea ice: distribution, diet and life history strategies.
    Arndt CE; Swadling KM
    Adv Mar Biol; 2006; 51():197-315. PubMed ID: 16905428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV-tolerance and instantaneous physiological stress responses of two Antarctic amphipod species Gondogeneia antarctica and Djerboa furcipes during exposure to UV radiation.
    Obermüller B; Puntarulo S; Abele D
    Mar Environ Res; 2007 Sep; 64(3):267-85. PubMed ID: 17379298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using stable isotopes to assess carbon and nitrogen turnover in the Arctic sympagic amphipod Onisimus litoralis.
    Kaufman MR; Gradinger RR; Bluhm BA; O'Brien DM
    Oecologia; 2008 Nov; 158(1):11-22. PubMed ID: 18709389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural organic matter (NOM) induces oxidative stress in freshwater amphipods Gammarus lacustris Sars and Gammarus tigrinus (Sexton).
    Timofeyev MA; Shatilina ZM; Kolesnichenko AV; Bedulina DS; Kolesnichenko VV; Pflugmacher S; Steinberg CE
    Sci Total Environ; 2006 Aug; 366(2-3):673-81. PubMed ID: 16542708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in biologically-active ultraviolet radiation reaching the Earth's surface.
    McKenzie RL; Aucamp PJ; Bais AF; Björn LO; Ilyas M
    Photochem Photobiol Sci; 2007 Mar; 6(3):218-31. PubMed ID: 17344959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of climate change and biotic UV exposure through changing snow-ice covers in terrestrial habitats.
    Cockell CS; Córdoba-Jabonero C
    Photochem Photobiol; 2004 Jan; 79(1):26-31. PubMed ID: 14974712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High latitude changes in ice dynamics and their impact on polar marine ecosystems.
    Moline MA; Karnovsky NJ; Brown Z; Divoky GJ; Frazer TK; Jacoby CA; Torres JJ; Fraser WR
    Ann N Y Acad Sci; 2008; 1134():267-319. PubMed ID: 18566098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata.
    Shiu CT; Lee TM
    J Exp Bot; 2005 Nov; 56(421):2851-65. PubMed ID: 16157654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace metals in Antarctica related to climate change and increasing human impact.
    Bargagli R
    Rev Environ Contam Toxicol; 2000; 166():129-73. PubMed ID: 10868078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-related bioaccumulation and between-year variation of organochlorines in ice-associated amphipods from the Arctic Ocean.
    Borgå K; Gulliksen B; Gabrielsen GW; Skaare JU
    Chemosphere; 2002 Mar; 46(9-10):1383-92. PubMed ID: 12002465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total antioxidant capacity and nuclear DNA damage in keratinocytes after exposure to H2O2.
    Armeni T; Battino M; Stronati A; Pugnaloni A; Tomassini G; Rosi G; Biagini G; Principato G
    Biol Chem; 2001 Dec; 382(12):1697-705. PubMed ID: 11843183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the relative antioxidant potency of L-ergothioneine and idebenone.
    Dong KK; Damaghi N; Kibitel J; Canning MT; Smiles KA; Yarosh DB
    J Cosmet Dermatol; 2007 Sep; 6(3):183-8. PubMed ID: 17760697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Psychrophilic versus psychrotolerant bacteria--occurrence and significance in polar and temperate marine habitats.
    Helmke E; Weyland H
    Cell Mol Biol (Noisy-le-grand); 2004 Jul; 50(5):553-61. PubMed ID: 15559972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.