These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19524344)

  • 41. Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil.
    Udovic M; Drobne D; Lestan D
    Environ Pollut; 2009 Oct; 157(10):2822-9. PubMed ID: 19464095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China.
    Zheng N; Liu J; Wang Q; Liang Z
    Sci Total Environ; 2010 Jan; 408(4):726-33. PubMed ID: 19926116
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monitoring metal and metalloid bioaccumulation in Hydropsyche (Trichoptera, Hydropsychidae) to evaluate metal pollution in a mining river. Whole body versus tissue content.
    Solà C; Prat N
    Sci Total Environ; 2006 Apr; 359(1-3):221-31. PubMed ID: 15907976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-phase metal kinetics in terrestrial invertebrates exposed to high metal concentrations.
    Laskowski R; Bednarska AJ; Spurgeon D; Svendsen C; van Gestel CA
    Sci Total Environ; 2010 Aug; 408(18):3794-802. PubMed ID: 19945146
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The use of the oyster Saccostrea glomerata as a biomonitor of trace metal contamination: intra-sample, local scale and temporal variability and its implications for biomonitoring.
    Robinson WA; Maher WA; Krikowa F; Nell JA; Hand R
    J Environ Monit; 2005 Mar; 7(3):208-23. PubMed ID: 15735780
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesizing bioaccumulation data from the German metals in mosses surveys and relating them to ecoregions.
    Schroeder W; Pesch R
    Sci Total Environ; 2007 Mar; 374(2-3):311-27. PubMed ID: 17270252
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of body size, condition index and tidal exposure on the variability in metal bioaccumulation in Mytilus edulis.
    Mubiana VK; Vercauteren K; Blust R
    Environ Pollut; 2006 Nov; 144(1):272-9. PubMed ID: 16513234
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh.
    Alam MG; Snow ET; Tanaka A
    Sci Total Environ; 2003 Jun; 308(1-3):83-96. PubMed ID: 12738203
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of flooding and metal immobilising soil amendments on availability of metals for willows and earthworms in calcareous dredged sediment-derived soils.
    Vandecasteele B; Du Laing G; Lettens S; Jordaens K; Tack FM
    Environ Pollut; 2010 Jun; 158(6):2181-8. PubMed ID: 20347195
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil.
    Smith BA; Egeler P; Gilberg D; Hendershot W; Stephenson GL
    Arch Environ Contam Toxicol; 2010 Aug; 59(2):264-73. PubMed ID: 20130851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Redistribution of residual Pb, Zn, and Cd in soil remediated with EDTA leaching and exposed to earthworms (Eisenia fetida).
    Udovic M; Lestan D
    Environ Technol; 2010 May; 31(6):655-69. PubMed ID: 20540427
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination.
    Hernandez L; Probst A; Probst JL; Ulrich E
    Sci Total Environ; 2003 Aug; 312(1-3):195-219. PubMed ID: 12873411
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area.
    Komárek M; Chrastný V; Stíchová J
    Environ Int; 2007 Jul; 33(5):677-84. PubMed ID: 17346793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative ultrastructure of metal-sequestering cells reflects intersite and interspecies differences in earthworm metal burdens.
    Morgan AJ; Turner MP
    Arch Environ Contam Toxicol; 2005 Jul; 49(1):45-52. PubMed ID: 15981036
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of sampling, preparation and defecation on metal concentrations in selected invertebrates at urban sites.
    Zödl B; Wittmann KJ
    Chemosphere; 2003 Aug; 52(7):1095-103. PubMed ID: 12820990
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China.
    Chen X; Xia X; Zhao Y; Zhang P
    J Hazard Mater; 2010 Sep; 181(1-3):640-6. PubMed ID: 20541319
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arsenic resistance and cycling in earthworms residing at a former gold mine in Canada.
    Button M; Koch I; Reimer KJ
    Environ Pollut; 2012 Oct; 169():74-80. PubMed ID: 22683483
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioaccumulation of heavy metals in terrestrial invertebrates.
    Heikens A; Peijnenburg WJ; Hendriks AJ
    Environ Pollut; 2001; 113(3):385-93. PubMed ID: 11428146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of soil metals on earthworm communities from the perspectives of earthworm ecotypes and metal bioaccumulation.
    Huang C; Ge Y; Yue S; Qiao Y; Liu L
    J Hazard Mater; 2021 Mar; 406():124738. PubMed ID: 33316673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.