These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19524630)

  • 1. Protein transport in human cells mediated by covalently and noncovalently conjugated arginine-rich intracellular delivery peptides.
    Hu JW; Liu BR; Wu CY; Lu SW; Lee HJ
    Peptides; 2009 Sep; 30(9):1669-78. PubMed ID: 19524630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine-rich intracellular delivery peptides synchronously deliver covalently and noncovalently linked proteins into plant cells.
    Lu SW; Hu JW; Liu BR; Lee CY; Li JF; Chou JC; Lee HJ
    J Agric Food Chem; 2010 Feb; 58(4):2288-94. PubMed ID: 20092251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides.
    Hou YW; Chan MH; Hsu HR; Liu BR; Chen CP; Chen HH; Lee HJ
    Exp Dermatol; 2007 Dec; 16(12):999-1006. PubMed ID: 18031459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells.
    Wang YH; Chen CP; Chan MH; Chang M; Hou YW; Chen HH; Hsu HR; Liu K; Lee HJ
    Biochem Biophys Res Commun; 2006 Aug; 346(3):758-67. PubMed ID: 16781666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study on transduction and toxicity of protein transduction domains.
    Sugita T; Yoshikawa T; Mukai Y; Yamanada N; Imai S; Nagano K; Yoshida Y; Shibata H; Yoshioka Y; Nakagawa S; Kamada H; Tsunoda SI; Tsutsumi Y
    Br J Pharmacol; 2008 Mar; 153(6):1143-52. PubMed ID: 18223668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The augmentation of intracellular delivery of peptide therapeutics by artificial protein transduction domains.
    Yoshikawa T; Sugita T; Mukai Y; Abe Y; Nakagawa S; Kamada H; Tsunoda S; Tsutsumi Y
    Biomaterials; 2009 Jul; 30(19):3318-23. PubMed ID: 19304319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular internalization of quantum dots noncovalently conjugated with arginine-rich cell-penetrating peptides.
    Liu BR; Li JF; Lu SW; Leel HJ; Huang YW; Shannon KB; Aronstam RS
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6534-43. PubMed ID: 21137758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A gene delivery system for insect cells mediated by arginine-rich cell-penetrating peptides.
    Chen YJ; Liu BR; Dai YH; Lee CY; Chan MH; Chen HH; Chiang HJ; Lee HJ
    Gene; 2012 Feb; 493(2):201-10. PubMed ID: 22173105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncovalent protein transduction in plant cells by macropinocytosis.
    Chang M; Chou JC; Chen CP; Liu BR; Lee HJ
    New Phytol; 2007; 174(1):46-56. PubMed ID: 17335496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Na+/H+ exchanger inhibitors on subcellular localisation of endocytic organelles and intracellular dynamics of protein transduction domains HIV-TAT peptide and octaarginine.
    Fretz M; Jin J; Conibere R; Penning NA; Al-Taei S; Storm G; Futaki S; Takeuchi T; Nakase I; Jones AT
    J Control Release; 2006 Nov; 116(2):247-54. PubMed ID: 16971016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent protein applications in plants.
    Berg RH; Beachy RN
    Methods Cell Biol; 2008; 85():153-77. PubMed ID: 18155463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement.
    Nakase I; Niwa M; Takeuchi T; Sonomura K; Kawabata N; Koike Y; Takehashi M; Tanaka S; Ueda K; Simpson JC; Jones AT; Sugiura Y; Futaki S
    Mol Ther; 2004 Dec; 10(6):1011-22. PubMed ID: 15564133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells.
    Chang M; Chou JC; Lee HJ
    Plant Cell Physiol; 2005 Mar; 46(3):482-8. PubMed ID: 15695452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a novel cell-permeable peptide-driven protein delivery in mouse blastocysts.
    Kwon S; Kwak A; Shin H; Choi S; Kim S; Lim HJ
    Reproduction; 2013 Aug; 146(2):145-53. PubMed ID: 23744616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A peptide carrier for the delivery of biologically active proteins into mammalian cells.
    Morris MC; Depollier J; Mery J; Heitz F; Divita G
    Nat Biotechnol; 2001 Dec; 19(12):1173-6. PubMed ID: 11731788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell Penetrating Peptides for Chemical Biological Studies.
    Nakase I; Takeuchi T; Futaki S
    Methods Mol Biol; 2015; 1324():387-96. PubMed ID: 26202284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides.
    Han K; Jeon MJ; Kim SH; Ki D; Bahn JH; Lee KS; Park J; Choi SY
    Mol Cells; 2001 Oct; 12(2):267-71. PubMed ID: 11710533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine-rich cell-penetrating peptides deliver gene into living human cells.
    Liu BR; Lin MD; Chiang HJ; Lee HJ
    Gene; 2012 Aug; 505(1):37-45. PubMed ID: 22669044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase.
    Lee CY; Li JF; Liou JS; Charng YC; Huang YW; Lee HJ
    Biomaterials; 2011 Sep; 32(26):6264-76. PubMed ID: 21636125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos.
    Chugh A; Eudes F
    FEBS J; 2008 May; 275(10):2403-14. PubMed ID: 18397318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.