These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19524678)

  • 1. Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding.
    Zhang L; Aleksandrov LA; Zhao Z; Birtley JR; Riordan JR; Ford RC
    J Struct Biol; 2009 Sep; 167(3):242-51. PubMed ID: 19524678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein.
    Awayn NH; Rosenberg MF; Kamis AB; Aleksandrov LA; Riordan JR; Ford RC
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):996-9. PubMed ID: 16246030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical implications of sequence comparisons of the cystic fibrosis transmembrane conductance regulator.
    Tan AL; Ong SA; Venkatesh B
    Arch Biochem Biophys; 2002 May; 401(2):215-22. PubMed ID: 12054472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for the ATPase activity of CFTR.
    Cheung JC; Kim Chiaw P; Pasyk S; Bear CE
    Arch Biochem Biophys; 2008 Aug; 476(1):95-100. PubMed ID: 18417076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational Changes of CFTR upon Phosphorylation and ATP Binding.
    Zhang Z; Liu F; Chen J
    Cell; 2017 Jul; 170(3):483-491.e8. PubMed ID: 28735752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations.
    Furukawa-Hagiya T; Furuta T; Chiba S; Sohma Y; Sakurai M
    J Phys Chem B; 2013 Jan; 117(1):83-93. PubMed ID: 23214920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Misfolding of the cystic fibrosis transmembrane conductance regulator and disease.
    Cheung JC; Deber CM
    Biochemistry; 2008 Feb; 47(6):1465-73. PubMed ID: 18193900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.
    Ramjeesingh M; Ugwu F; Stratford FL; Huan LJ; Li C; Bear CE
    Biochem J; 2008 Jun; 412(2):315-21. PubMed ID: 18241200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease.
    Pasyk S; Li C; Ramjeesingh M; Bear CE
    Biochem J; 2009 Feb; 418(1):185-90. PubMed ID: 18945216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain interdependence in the biosynthetic assembly of CFTR.
    Cui L; Aleksandrov L; Chang XB; Hou YX; He L; Hegedus T; Gentzsch M; Aleksandrov A; Balch WE; Riordan JR
    J Mol Biol; 2007 Jan; 365(4):981-94. PubMed ID: 17113596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CFTR-associated ATP transport and release.
    Egan ME
    Methods Mol Med; 2002; 70():395-406. PubMed ID: 11917539
    [No Abstract]   [Full Text] [Related]  

  • 13. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer.
    Stratford FL; Ramjeesingh M; Cheung JC; Huan LJ; Bear CE
    Biochem J; 2007 Jan; 401(2):581-6. PubMed ID: 16989640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator.
    Wang G
    J Biol Chem; 2011 Jan; 286(3):2171-82. PubMed ID: 21059651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFTR structure, stability, function and regulation.
    Meng X; Clews J; Ciuta AD; Martin ER; Ford RC
    Biol Chem; 2019 Sep; 400(10):1359-1370. PubMed ID: 30738013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM Visualization of an Active High Open Probability CFTR Anion Channel.
    Fay JF; Aleksandrov LA; Jensen TJ; Cui LL; Kousouros JN; He L; Aleksandrov AA; Gingerich DS; Riordan JR; Chen JZ
    Biochemistry; 2018 Oct; 57(43):6234-6246. PubMed ID: 30281975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular structure of the ATP-bound, phosphorylated human CFTR.
    Zhang Z; Liu F; Chen J
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12757-12762. PubMed ID: 30459277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mg2+ -dependent ATP occlusion at the first nucleotide-binding domain (NBD1) of CFTR does not require the second (NBD2).
    Aleksandrov L; Aleksandrov A; Riordan JR
    Biochem J; 2008 Nov; 416(1):129-36. PubMed ID: 18605986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate.
    Rosenberg MF; O'Ryan LP; Hughes G; Zhao Z; Aleksandrov LA; Riordan JR; Ford RC
    J Biol Chem; 2011 Dec; 286(49):42647-42654. PubMed ID: 21931164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFTR three-dimensional structure.
    Ford RC; Birtley J; Rosenberg MF; Zhang L
    Methods Mol Biol; 2011; 741():329-46. PubMed ID: 21594795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.