BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19524686)

  • 1. Different responses of Fe transporters in Caco-2/HT29-MTX cocultures than in independent Caco-2 cell cultures.
    Laparra JM; Glahn RP; Miller DD
    Cell Biol Int; 2009 Sep; 33(9):971-7. PubMed ID: 19524686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability.
    Mahler GJ; Shuler ML; Glahn RP
    J Nutr Biochem; 2009 Jul; 20(7):494-502. PubMed ID: 18715773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron Supplements Containing
    Sandberg AS; Önning G; Engström N; Scheers N
    Nutrients; 2018 Dec; 10(12):. PubMed ID: 30544799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purified glycosaminoglycans from cooked haddock may enhance Fe uptake via endocytosis in a Caco-2 cell culture model.
    Laparra JM; Barberá R; Alegría A; Glahn RP; Miller DD
    J Food Sci; 2009 Aug; 74(6):H168-73. PubMed ID: 19723201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure.
    Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A
    Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
    Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P
    J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inulin affects iron dialyzability from FeSO4 and FeEDTA solutions but does not alter Fe uptake by Caco-2 cells.
    Laparra JM; Tako E; Glahn RP; Miller DD
    J Agric Food Chem; 2008 Apr; 56(8):2846-51. PubMed ID: 18370395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells.
    Han O; Wessling-Resnick M
    Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G527-33. PubMed ID: 11842003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium.
    Laparra JM; Sanz Y
    Lett Appl Microbiol; 2009 Dec; 49(6):695-701. PubMed ID: 19843211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oleic Acid Uptake Reveals the Rescued Enterocyte Phenotype of Colon Cancer Caco-2 by HT29-MTX Cells in Co-Culture Mode.
    Berger E; Nassra M; Atgié C; Plaisancié P; Géloën A
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28726765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of divalent metal transporter expression in human intestinal epithelial cells following exposure to non-haem iron.
    Johnson DM; Yamaji S; Tennant J; Srai SK; Sharp PA
    FEBS Lett; 2005 Mar; 579(9):1923-9. PubMed ID: 15792797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal transport of methylmercury and inorganic mercury in various models of Caco-2 and HT29-MTX cells.
    Vázquez M; Calatayud M; Vélez D; Devesa V
    Toxicology; 2013 Sep; 311(3):147-53. PubMed ID: 23793072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving toward a more physiological model: application of mucin to refine the in vitro digestion/Caco-2 cell culture system.
    Jin F; Welch R; Glahn R
    J Agric Food Chem; 2006 Nov; 54(23):8962-7. PubMed ID: 17090148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies.
    Araújo F; Sarmento B
    Int J Pharm; 2013 Dec; 458(1):128-34. PubMed ID: 24120728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Duodenal cytochrome B expression stimulates iron uptake by human intestinal epithelial cells.
    Latunde-Dada GO; Simpson RJ; McKie AT
    J Nutr; 2008 Jun; 138(6):991-5. PubMed ID: 18492824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ascorbic acid, phytic acid and tannic acid on iron bioavailability from reconstituted ferritin measured by an in vitro digestion-Caco-2 cell model.
    Jin F; Frohman C; Thannhauser TW; Welch RM; Glahn RP
    Br J Nutr; 2009 Apr; 101(7):972-81. PubMed ID: 18755051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of ascorbic acid and citric acid on iron bioavailability in an in vitro digestion/ Caco-2 cell culture model].
    Lei J; Zhang MQ; Huang CY; Bai L; He ZH
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Oct; 28(10):1743-7. PubMed ID: 18971162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion.
    Gagnon M; Zihler Berner A; Chervet N; Chassard C; Lacroix C
    J Microbiol Methods; 2013 Sep; 94(3):274-9. PubMed ID: 23835135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepcidin inhibits apical iron uptake in intestinal cells.
    Mena NP; Esparza A; Tapia V; Valdés P; Núñez MT
    Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G192-8. PubMed ID: 17962361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitated nanoscale delivery of insulin across intestinal membrane models.
    Woitiski CB; Sarmento B; Carvalho RA; Neufeld RJ; Veiga F
    Int J Pharm; 2011 Jun; 412(1-2):123-31. PubMed ID: 21501675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.