These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 19524998)

  • 1. Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower.
    Usman AR; Mohamed HM
    Chemosphere; 2009 Aug; 76(7):893-9. PubMed ID: 19524998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C; Shen Z; Li X
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study.
    Li H; Wang Q; Cui Y; Dong Y; Christie P
    Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil.
    Wang FY; Lin XG; Yin R
    Int J Phytoremediation; 2007; 9(4):345-53. PubMed ID: 18246710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case.
    Wang FY; Lin XG; Yin R
    Environ Pollut; 2007 May; 147(1):248-55. PubMed ID: 17011687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds.
    Luo C; Shen Z; Lou L; Li X
    Environ Pollut; 2006 Dec; 144(3):862-71. PubMed ID: 16616805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils.
    Liang CC; Li T; Xiao YP; Liu MJ; Zhang HB; Zhao ZW
    Int J Phytoremediation; 2009; 11(8):692-703. PubMed ID: 19810598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals?
    January MC; Cutright TJ; Van Keulen H; Wei R
    Chemosphere; 2008 Jan; 70(3):531-7. PubMed ID: 17697697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays, L.).
    Zhao Z; Xi M; Jiang G; Liu X; Bai Z; Huang Y
    J Hazard Mater; 2010 Sep; 181(1-3):455-9. PubMed ID: 20627568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils.
    Turgut C; Pepe MK; Cutright TJ
    Chemosphere; 2005 Feb; 58(8):1087-95. PubMed ID: 15664616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced phytoextraction: in search of EDTA alternatives.
    Meers E; Hopgood M; Lesage E; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2004; 6(2):95-109. PubMed ID: 15328977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process.
    Chen Y; Li X; Shen Z
    Chemosphere; 2004 Oct; 57(3):187-96. PubMed ID: 15312735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil.
    Meers E; Lesage E; Lamsal S; Hopgood M; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):129-42. PubMed ID: 16128444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site.
    Zhang Y; Hu J; Bai J; Wang J; Yin R; Wang J; Lin X
    Sci Total Environ; 2018 Jul; 628-629():282-290. PubMed ID: 29438937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.