BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 19525066)

  • 1. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy.
    Gu L; Sigle W; Koch CT; Nelayah J; Srot V; van Aken PA
    Ultramicroscopy; 2009 Aug; 109(9):1164-70. PubMed ID: 19525066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new experimental procedure to quantify annular dark field images in scanning transmission electron microscopy.
    Walther T
    J Microsc; 2006 Feb; 221(Pt 2):137-44. PubMed ID: 16499552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging, core-loss, and low-loss electron-energy-loss spectroscopy mapping in aberration-corrected STEM.
    Lazar S; Shao Y; Gunawan L; Nechache R; Pignolet A; Botton GA
    Microsc Microanal; 2010 Aug; 16(4):416-24. PubMed ID: 20598204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and optimization of the performance of elastic and inelastic scanning transmission electron microscope imaging by correlation analysis.
    Mory C; Bonnet N; Colliex C; Kohl H; Tencé M
    Scanning Microsc Suppl; 1988; 2():329-42. PubMed ID: 3244971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocrystalline Domain Identification in Gold Films, by Backscattered Electron Imaging and Energy-Filtered Transmission Electron Microscopy.
    Leite CA; Galembeck F
    J Colloid Interface Sci; 2001 Mar; 235(1):4-8. PubMed ID: 11237437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of specimen thickness and composition in Al(x)Ga(1-x)N/GaN using high-angle annular dark field images.
    Rosenauer A; Gries K; Müller K; Pretorius A; Schowalter M; Avramescu A; Engl K; Lutgen S
    Ultramicroscopy; 2009 Aug; 109(9):1171-82. PubMed ID: 19497670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. StripeSTEM, a technique for the isochronous acquisition of high angle annular dark-field images and monolayer resolved electron energy loss spectra.
    Heidelmann M; Barthel J; Houben L
    Ultramicroscopy; 2009 Nov; 109(12):1447-52. PubMed ID: 19665304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental quantification of annular dark-field images in scanning transmission electron microscopy.
    Lebeau JM; Stemmer S
    Ultramicroscopy; 2008 Nov; 108(12):1653-8. PubMed ID: 18707809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2005 Oct; 104(3-4):176-92. PubMed ID: 15885909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Z dependence of electron scattering by single atoms into annular dark-field detectors.
    Treacy MM
    Microsc Microanal; 2011 Dec; 17(6):847-58. PubMed ID: 22051035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon energy mapping in energy-filtering transmission electron microscopy.
    Sigle W; Krämer S; Varshney V; Zern A; Eigenthaler U; Rühle M
    Ultramicroscopy; 2003 Sep; 96(3-4):565-71. PubMed ID: 12871817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of high-angle annular dark-field scanning transmission electron microscopy and observations of GaN-based violet laser diodes.
    Shiojiri M; Saijo H
    J Microsc; 2006 Sep; 223(Pt 3):172-8. PubMed ID: 17059523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of phase contrast transmission electron microscopy with optimized scanning transmission annular dark field imaging for protein imaging.
    Rez P
    Ultramicroscopy; 2003 Jul; 96(1):117-24. PubMed ID: 12623176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Si and Ge low-loss spectra to interpret the Ge contrast in EFTEM images of Si(1-x) Ge(x) nanostructures.
    Pantel R; Cheynet MC; Tichelaar FD
    Micron; 2006; 37(7):657-65. PubMed ID: 16529938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire.
    Sigle W; Nelayah J; Koch CT; van Aken PA
    Opt Lett; 2009 Jul; 34(14):2150-2. PubMed ID: 19823531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy.
    Wang J; Li Q; Egerton RF
    Micron; 2007; 38(4):346-53. PubMed ID: 16938457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy.
    Egerton RF
    Ultramicroscopy; 2007 Aug; 107(8):575-86. PubMed ID: 17257759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy.
    D'Alfonso AJ; Findlay SD; Oxley MP; Pennycook SJ; van Benthem K; Allen LJ
    Ultramicroscopy; 2007 Dec; 108(1):17-28. PubMed ID: 17395376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of surface and retardation losses on valence electron energy-loss spectroscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2008 Jan; 108(2):84-99. PubMed ID: 17481821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy.
    Van Aert S; Verbeeck J; Erni R; Bals S; Luysberg M; Van Dyck D; Van Tendeloo G
    Ultramicroscopy; 2009 Sep; 109(10):1236-44. PubMed ID: 19525069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.