BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19525157)

  • 1. A shotgun lipidomics study of a putative lysophosphatidic acid acyl transferase (PlsC) in Sinorhizobium meliloti.
    Basconcillo LS; Zaheer R; Finan TM; McCarry BE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Sep; 877(26):2873-82. PubMed ID: 19525157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids.
    Gao JL; Weissenmayer B; Taylor AM; Thomas-Oates J; López-Lara IM; Geiger O
    Mol Microbiol; 2004 Sep; 53(6):1757-70. PubMed ID: 15341653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclopropane fatty acyl synthase in Sinorhizobium meliloti.
    Saborido Basconcillo L; Zaheer R; Finan TM; McCarry BE
    Microbiology (Reading); 2009 Feb; 155(Pt 2):373-385. PubMed ID: 19202086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis.
    Ferguson GP; Datta A; Carlson RW; Walker GC
    Mol Microbiol; 2005 Apr; 56(1):68-80. PubMed ID: 15773979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A shotgun lipidomics approach in Sinorhizobium meliloti as a tool in functional genomics.
    Basconcillo LS; Zaheer R; Finan TM; McCarry BE
    J Lipid Res; 2009 Jun; 50(6):1120-32. PubMed ID: 19096048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dioxygenase-encoding olsD gene from Burkholderia cenocepacia causes the hydroxylation of the amide-linked fatty acyl moiety of ornithine-containing membrane lipids.
    González-Silva N; López-Lara IM; Reyes-Lamothe R; Taylor AM; Sumpton D; Thomas-Oates J; Geiger O
    Biochemistry; 2011 Jul; 50(29):6396-408. PubMed ID: 21707055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a potential bottleneck in branched chain fatty acid incorporation into triacylglycerol for lipid biosynthesis in agronomic plants.
    Nlandu Mputu M; Rhazi L; Vasseur G; Vu TD; Gontier E; Thomasset B
    Biochimie; 2009 Jun; 91(6):703-10. PubMed ID: 19327383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of acyltransferases from Synechocystis sp. PCC6803.
    Weier D; Müller C; Gaspers C; Frentzen M
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1127-34. PubMed ID: 16039611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the symbiotic and competition phenotypes of Sinorhizobium meliloti PHB synthesis and degradation pathway mutants.
    Aneja P; Zachertowska A; Charles TC
    Can J Microbiol; 2005 Jul; 51(7):599-604. PubMed ID: 16175209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a gene required for the biosynthesis of ornithine-derived lipids.
    Weissenmayer B; Gao JL; López-Lara IM; Geiger O
    Mol Microbiol; 2002 Aug; 45(3):721-33. PubMed ID: 12139618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein.
    Kaddor C; Biermann K; Kalscheuer R; Steinbüchel A
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):143-55. PubMed ID: 19424691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Investigation of lipopolysaccharides from Sinorhizobium meliloti SKHM1-188 and two of its mutants with decreased nodulation competitiveness].
    Kosenko LV; Zatovskaia TV
    Mikrobiologiia; 2004; 73(3):350-7. PubMed ID: 15315228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of poly-3-hydroxybutyrate synthase mutation on the metabolism of Ensifer (formerly Sinorhizobium) meliloti.
    Povolo S; Casella S
    J Basic Microbiol; 2009 Apr; 49(2):178-86. PubMed ID: 19025879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel 1-acyl-sn-glycerol-3-phosphate O-acyltransferase homolog for the synthesis of membrane phospholipids with a branched-chain fatty acyl group in Shewanella livingstonensis Ac10.
    Toyotake Y; Cho HN; Kawamoto J; Kurihara T
    Biochem Biophys Res Commun; 2018 Jun; 500(3):704-709. PubMed ID: 29678574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors.
    Demont N; Debellé F; Aurelle H; Dénarié J; Promé JC
    J Biol Chem; 1993 Sep; 268(27):20134-42. PubMed ID: 8376372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysophosphatidic acid acyltransferase from the thermophilic bacterium
    Ogawa T; Suwanawat N; Toyotake Y; Watanabe B; Kawamoto J; Kurihara T
    Biosci Biotechnol Biochem; 2020 Sep; 84(9):1831-1838. PubMed ID: 32456605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FadD is required for utilization of endogenous fatty acids released from membrane lipids.
    Pech-Canul Á; Nogales J; Miranda-Molina A; Álvarez L; Geiger O; Soto MJ; López-Lara IM
    J Bacteriol; 2011 Nov; 193(22):6295-304. PubMed ID: 21926226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three GC/MS methodologies for the analysis of fatty acids in Sinorhizobium meliloti: development of a micro-scale, one-vial method.
    Basconcillo LS; McCarry BE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Aug; 871(1):22-31. PubMed ID: 18635405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overproduction and increased molecular weight account for the symbiotic activity of the rkpZ-modified K polysaccharide from Sinorhizobium meliloti Rm1021.
    Sharypova LA; Chataigné G; Fraysse N; Becker A; Poinsot V
    Glycobiology; 2006 Dec; 16(12):1181-93. PubMed ID: 16957092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions.
    Griffitts JS; Long SR
    Mol Microbiol; 2008 Mar; 67(6):1292-306. PubMed ID: 18284576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.