These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 19525272)
1. Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24. Branco R; Francisco R; Chung AP; Morais PV Appl Environ Microbiol; 2009 Aug; 75(15):5141-7. PubMed ID: 19525272 [TBL] [Abstract][Full Text] [Related]
2. Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T. Branco R; Chung AP; Morais PV BMC Microbiol; 2008 Jun; 8():95. PubMed ID: 18554386 [TBL] [Abstract][Full Text] [Related]
3. Hyper Accumulation of Arsenic in Mutants of Ochrobactrum tritici Silenced for Arsenite Efflux Pumps. Sousa T; Branco R; Piedade AP; Morais PV PLoS One; 2015; 10(7):e0131317. PubMed ID: 26132104 [TBL] [Abstract][Full Text] [Related]
4. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Cai L; Rensing C; Li X; Wang G Appl Microbiol Biotechnol; 2009 Jun; 83(4):715-25. PubMed ID: 19283378 [TBL] [Abstract][Full Text] [Related]
5. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11. Koechler S; Arsène-Ploetze F; Brochier-Armanet C; Goulhen-Chollet F; Heinrich-Salmeron A; Jost B; Lièvremont D; Philipps M; Plewniak F; Bertin PN; Lett MC Res Microbiol; 2015 Apr; 166(3):205-14. PubMed ID: 25753102 [TBL] [Abstract][Full Text] [Related]
6. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540 [TBL] [Abstract][Full Text] [Related]
7. Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. Muller D; Lièvremont D; Simeonova DD; Hubert JC; Lett MC J Bacteriol; 2003 Jan; 185(1):135-41. PubMed ID: 12486049 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the ars gene cluster from highly arsenic-resistant Burkholderia xenovorans LB400. Serrato-Gamiño N; Salgado-Lora MG; Chávez-Moctezuma MP; Campos-García J; Cervantes C World J Microbiol Biotechnol; 2018 Sep; 34(10):142. PubMed ID: 30203106 [TBL] [Abstract][Full Text] [Related]
9. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review. Kumari N; Jagadevan S Chemosphere; 2016 Nov; 163():400-412. PubMed ID: 27565307 [TBL] [Abstract][Full Text] [Related]
10. Detoxification of ars genotypes by arsenite-oxidizing bacteria through arsenic biotransformation. Chang JS; Kim HJ; Lee JH Environ Geochem Health; 2024 Oct; 46(11):470. PubMed ID: 39382695 [TBL] [Abstract][Full Text] [Related]
11. Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Prithivirajsingh S; Mishra SK; Mahadevan A Mol Biol Rep; 2001; 28(2):63-72. PubMed ID: 11931390 [TBL] [Abstract][Full Text] [Related]
13. Detection and analysis of chromosomal arsenic resistance in Pseudomonas fluorescens strain MSP3. Prithivirajsingh S; Mishra SK; Mahadevan A Biochem Biophys Res Commun; 2001 Feb; 280(5):1393-401. PubMed ID: 11162686 [TBL] [Abstract][Full Text] [Related]
14. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia. Chang JS Environ Pollut; 2015 Nov; 206():315-23. PubMed ID: 26219073 [TBL] [Abstract][Full Text] [Related]
15. Biological characterization of Bacillus flexus strain SSAI1 transforming highly toxic arsenite to less toxic arsenate mediated by periplasmic arsenite oxidase enzyme encoded by aioAB genes. Mujawar SY; Vaigankar DC; Dubey SK Biometals; 2021 Aug; 34(4):895-907. PubMed ID: 33956287 [TBL] [Abstract][Full Text] [Related]
16. Organization and regulation of the arsenite oxidase operon of the moderately acidophilic and facultative chemoautotrophic Thiomonas arsenitoxydans. Slyemi D; Moinier D; Talla E; Bonnefoy V Extremophiles; 2013 Nov; 17(6):911-20. PubMed ID: 23974983 [TBL] [Abstract][Full Text] [Related]
17. Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Mateos LM; Ordóñez E; Letek M; Gil JA Int Microbiol; 2006 Sep; 9(3):207-15. PubMed ID: 17061211 [TBL] [Abstract][Full Text] [Related]
18. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. Cai L; Liu G; Rensing C; Wang G BMC Microbiol; 2009 Jan; 9():4. PubMed ID: 19128515 [TBL] [Abstract][Full Text] [Related]
19. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Cavalca L; Zanchi R; Corsini A; Colombo M; Romagnoli C; Canzi E; Andreoni V Syst Appl Microbiol; 2010 Apr; 33(3):154-64. PubMed ID: 20303688 [TBL] [Abstract][Full Text] [Related]
20. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification. Del Giudice I; Limauro D; Pedone E; Bartolucci S; Fiorentino G Biochim Biophys Acta; 2013 Oct; 1834(10):2071-9. PubMed ID: 23800470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]