These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19525316)

  • 1. Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles.
    Viswaprakash N; Dennis JC; Globa L; Pustovyy O; Josephson EM; Kanju P; Morrison EE; Vodyanoy VJ
    Chem Senses; 2009 Sep; 34(7):547-57. PubMed ID: 19525316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Olfactory responses to explosives associated odorants are enhanced by zinc nanoparticles.
    Moore CH; Pustovyy O; Dennis JC; Moore T; Morrison EE; Vodyanoy VJ
    Talanta; 2012 Jan; 88():730-3. PubMed ID: 22265566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants.
    Hagerty S; Daniels Y; Singletary M; Pustovyy O; Globa L; MacCrehan WA; Muramoto S; Stan G; Lau JW; Morrison EE; Sorokulova I; Vodyanoy V
    Biometals; 2016 Dec; 29(6):1005-1018. PubMed ID: 27649965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous zinc nanoparticles in the rat olfactory epithelium are functionally significant.
    Singletary M; Lau JW; Hagerty S; Pustovyy O; Globa L; Vodyanoy V
    Sci Rep; 2020 Oct; 10(1):18435. PubMed ID: 33116197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc nanoparticles interact with olfactory receptor neurons.
    Vodyanoy V
    Biometals; 2010 Dec; 23(6):1097-103. PubMed ID: 20559685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PEGylation of zinc nanoparticles amplifies their ability to enhance olfactory responses to odorant.
    Singletary M; Hagerty S; Muramoto S; Daniels Y; MacCrehan WA; Stan G; Lau JW; Pustovyy O; Globa L; Morrison EE; Sorokulova I; Vodyanoy V
    PLoS One; 2017; 12(12):e0189273. PubMed ID: 29261701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Odorants as cell-type specific activators of a heat shock response in the rat olfactory mucosa.
    Carr VM; Menco BP; Yankova MP; Morimoto RI; Farbman AI
    J Comp Neurol; 2001 Apr; 432(4):425-39. PubMed ID: 11268007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic odorant exposure upregulates acquisition of functional properties in cultured embryonic chick olfactory sensory neurons.
    O'Neill G; Musto C; Gomez G
    J Neurosci Res; 2017 May; 95(5):1216-1224. PubMed ID: 27714890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Odor-Induced Activity in the Canine Brain by Zinc Nanoparticles: A Functional MRI Study in Fully Unrestrained Conscious Dogs.
    Jia H; Pustovyy OM; Wang Y; Waggoner P; Beyers RJ; Schumacher J; Wildey C; Morrison E; Salibi N; Denney TS; Vodyanoy VJ; Deshpande G
    Chem Senses; 2016 Jan; 41(1):53-67. PubMed ID: 26464498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Odorant response kinetics from cultured mouse olfactory epithelium at different ages in vitro.
    Viswaprakash N; Josephson EM; Dennis JC; Yilma S; Morrison EE; Vodyanoy VJ
    Cells Tissues Organs; 2010; 192(6):361-73. PubMed ID: 20664250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perforated Patch-clamp Recording of Mouse Olfactory Sensory Neurons in Intact Neuroepithelium: Functional Analysis of Neurons Expressing an Identified Odorant Receptor.
    Jarriault D; Grosmaitre X
    J Vis Exp; 2015 Jul; (101):e52652. PubMed ID: 26275097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuropeptide receptors provide a signalling pathway for trigeminal modulation of olfactory transduction.
    Daiber P; Genovese F; Schriever VA; Hummel T; Möhrlen F; Frings S
    Eur J Neurosci; 2013 Feb; 37(4):572-82. PubMed ID: 23205840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Odor discrimination by G protein-coupled olfactory receptors.
    Touhara K
    Microsc Res Tech; 2002 Aug; 58(3):135-41. PubMed ID: 12203691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pharmacological profile of the aldehyde receptor repertoire in rat olfactory epithelium.
    Araneda RC; Peterlin Z; Zhang X; Chesler A; Firestein S
    J Physiol; 2004 Mar; 555(Pt 3):743-56. PubMed ID: 14724183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of odorant elicited calcium changes in cultured human olfactory neurons.
    Gomez G; Rawson NE; Hahn CG; Michaels R; Restrepo D
    J Neurosci Res; 2000 Dec; 62(5):737-49. PubMed ID: 11104513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium.
    Thiebaud N; Menetrier F; Belloir C; Minn AL; Neiers F; Artur Y; Le Bon AM; Heydel JM
    Neurosci Lett; 2011 Nov; 505(2):180-5. PubMed ID: 22015764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apoptosis induced by prolonged exposure to odorants in cultured cells from rat olfactory epithelium.
    Brauchi S; Cea C; Farias JG; Bacigalupo J; Reyes JG
    Brain Res; 2006 Aug; 1103(1):114-22. PubMed ID: 16814749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice.
    Lee AC; Tian H; Grosmaitre X; Ma M
    Chem Senses; 2009 Oct; 34(8):695-703. PubMed ID: 19759360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zonal ablation of the olfactory sensory neuroepithelium of the mouse: effects on odorant detection.
    Vedin V; Slotnick B; Berghard A
    Eur J Neurosci; 2004 Oct; 20(7):1858-64. PubMed ID: 15380007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anoctamin 2/TMEM16B: a calcium-activated chloride channel in olfactory transduction.
    Pifferi S; Cenedese V; Menini A
    Exp Physiol; 2012 Feb; 97(2):193-9. PubMed ID: 21890523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.