These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19525398)

  • 1. Model criticism based on likelihood-free inference, with an application to protein network evolution.
    Ratmann O; Andrieu C; Wiuf C; Richardson S
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10576-81. PubMed ID: 19525398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum.
    Ratmann O; Jørgensen O; Hinkley T; Stumpf M; Richardson S; Wiuf C
    PLoS Comput Biol; 2007 Nov; 3(11):e230. PubMed ID: 18052538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical guide to pseudo-marginal methods for computational inference in systems biology.
    Warne DJ; Baker RE; Simpson MJ
    J Theor Biol; 2020 Jul; 496():110255. PubMed ID: 32223995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Likelihood free inference for Markov processes: a comparison.
    Owen J; Wilkinson DJ; Gillespie CS
    Stat Appl Genet Mol Biol; 2015 Apr; 14(2):189-209. PubMed ID: 25720092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation.
    Mar JC; Harlow TJ; Ragan MA
    BMC Evol Biol; 2005 Jan; 5():8. PubMed ID: 15676079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximate Bayesian computation (ABC) gives exact results under the assumption of model error.
    Wilkinson RD
    Stat Appl Genet Mol Biol; 2013 May; 12(2):129-41. PubMed ID: 23652634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo.
    Rabier CE; Berry V; Stoltz M; Santos JD; Wang W; Glaszmann JC; Pardi F; Scornavacca C
    PLoS Comput Biol; 2021 Sep; 17(9):e1008380. PubMed ID: 34478440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamentals and Recent Developments in Approximate Bayesian Computation.
    Lintusaari J; Gutmann MU; Dutta R; Kaski S; Corander J
    Syst Biol; 2017 Jan; 66(1):e66-e82. PubMed ID: 28175922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph spectral analysis of protein interaction network evolution.
    Thorne T; Stumpf MP
    J R Soc Interface; 2012 Oct; 9(75):2653-66. PubMed ID: 22552917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.
    Wang Y; Christley S; Mjolsness E; Xie X
    BMC Syst Biol; 2010 Jul; 4():99. PubMed ID: 20663171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times.
    dos Reis M; Yang Z
    Mol Biol Evol; 2011 Jul; 28(7):2161-72. PubMed ID: 21310946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Birth/birth-death processes and their computable transition probabilities with biological applications.
    Ho LST; Xu J; Crawford FW; Minin VN; Suchard MA
    J Math Biol; 2018 Mar; 76(4):911-944. PubMed ID: 28741177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GpABC: a Julia package for approximate Bayesian computation with Gaussian process emulation.
    Tankhilevich E; Ish-Horowicz J; Hameed T; Roesch E; Kleijn I; Stumpf MPH; He F
    Bioinformatics; 2020 May; 36(10):3286-3287. PubMed ID: 32022854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational methods for a class of network models.
    Wang J; Jasra A; De Iorio M
    J Comput Biol; 2014 Feb; 21(2):141-61. PubMed ID: 24144112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robustly estimating the marginal likelihood for cognitive models via importance sampling.
    Tran MN; Scharth M; Gunawan D; Kohn R; Brown SD; Hawkins GE
    Behav Res Methods; 2021 Jun; 53(3):1148-1165. PubMed ID: 33001382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing threshold-schedules for sequential approximate Bayesian computation: applications to molecular systems.
    Silk D; Filippi S; Stumpf MP
    Stat Appl Genet Mol Biol; 2013 Oct; 12(5):603-18. PubMed ID: 24025688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unifying vertical and nonvertical evolution: a stochastic ARG-based framework.
    Bloomquist EW; Suchard MA
    Syst Biol; 2010 Jan; 59(1):27-41. PubMed ID: 20525618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art.
    Warne DJ; Baker RE; Simpson MJ
    J R Soc Interface; 2019 Feb; 16(151):20180943. PubMed ID: 30958205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automatic adaptive method to combine summary statistics in approximate Bayesian computation.
    Harrison JU; Baker RE
    PLoS One; 2020; 15(8):e0236954. PubMed ID: 32760106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.