These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19525553)

  • 1. Postnatal development shifts the balance of pain descending control.
    Bardoni R
    J Physiol; 2009 Jun; 587(Pt 12):2711-2. PubMed ID: 19525553
    [No Abstract]   [Full Text] [Related]  

  • 2. Muscle pain activates a direct projection from ventrolateral periaqueductal gray to rostral ventrolateral medulla in rats.
    Keay KA; Li QF; Bandler R
    Neurosci Lett; 2000 Sep; 290(3):157-60. PubMed ID: 10963887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray.
    Yin JB; Wu HH; Dong YL; Zhang T; Wang J; Zhang Y; Wei YY; Lu YC; Wu SX; Wang W; Li YQ
    Front Neural Circuits; 2014; 8():137. PubMed ID: 25477786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation-produced analgesia in animals: behavioural investigations.
    Oliveras JL; Besson JM
    Prog Brain Res; 1988; 77():141-57. PubMed ID: 3064165
    [No Abstract]   [Full Text] [Related]  

  • 5. Periaqueductal gray: an interface for behavioral control.
    Benarroch EE
    Neurology; 2012 Jan; 78(3):210-7. PubMed ID: 22249496
    [No Abstract]   [Full Text] [Related]  

  • 6. Descending modulation in persistent pain: an update.
    Ren K; Dubner R
    Pain; 2002 Nov; 100(1-2):1-6. PubMed ID: 12435453
    [No Abstract]   [Full Text] [Related]  

  • 7. Prostaglandin E2 in the midbrain periaqueductal gray produces hyperalgesia and activates pain-modulating circuitry in the rostral ventromedial medulla.
    Heinricher MM; Martenson ME; Neubert MJ
    Pain; 2004 Jul; 110(1-2):419-26. PubMed ID: 15275794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The response of individual nucleus raphe magnus neurons to microinjections of met-enkephalin at midbrain and at bulbar loci: evidence for midbrain-bulbar convergence on individual raphe neurons.
    Rosenfeld JP
    Int J Neurosci; 1987 Apr; 33(3-4):165-73. PubMed ID: 3596947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the antinociceptive effect of morphine and glutamate at coincidental sites in the periaqueductal gray and medial medulla in rats.
    Jensen TS; Yaksh TL
    Brain Res; 1989 Jan; 476(1):1-9. PubMed ID: 2563331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the effects of ventral medullary lesions on systemic and microinjection morphine analgesia.
    Young EG; Watkins LR; Mayer DJ
    Brain Res; 1984 Jan; 290(1):119-29. PubMed ID: 6692127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of analgesic, pro- and anti-convulsant opiate effects in the rat.
    Van Praag H; Falcon M; Guendelman D; Frenk H
    Ann Ist Super Sanita; 1993; 29(3):419-29. PubMed ID: 8172461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla.
    Morgan MM; Heinricher MM; Fields HL
    Neuroscience; 1992; 47(4):863-71. PubMed ID: 1579215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of inhibition of a spinal nociceptive reflex by stimulation medially and laterally in the midbrain and medulla in the pentobarbital-anesthetized rat.
    Sandkühler J; Gebhart GF
    Brain Res; 1984 Jul; 305(1):67-76. PubMed ID: 6744062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of High Dose Spinal Cord Stimulation on the descending pain modulatory system in patients with failed back surgery syndrome.
    De Groote S; Goudman L; Peeters R; Linderoth B; Van Schuerbeek P; Sunaert S; De Jaeger M; De Smedt A; De Andrés J; Moens M
    Neuroimage Clin; 2019; 24():102087. PubMed ID: 31795057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analgesia produced by microinjection of L-glutamate into the rostral ventromedial bulbar nuclei of the rat and its inhibition by intrathecal alpha-adrenergic blocking agents.
    Satoh M; Oku R; Akaike A
    Brain Res; 1983 Feb; 261(2):361-4. PubMed ID: 6131729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic pain and medullary descending facilitation.
    Porreca F; Ossipov MH; Gebhart GF
    Trends Neurosci; 2002 Jun; 25(6):319-25. PubMed ID: 12086751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Midbrain nuclei projecting to the medial medulla oblongata in the monkey.
    Chung JM; Kevetter GA; Yezierski RP; Haber LH; Martin RF; Willis WD
    J Comp Neurol; 1983 Feb; 214(1):93-102. PubMed ID: 6841679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Midbrain stimulation inhibits tail-flick only at currents sufficient to excite rostral medullary neurons.
    Vanegas H; Barbaro NM; Fields HL
    Brain Res; 1984 Oct; 321(1):127-33. PubMed ID: 6498508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat.
    Sandkühler J; Gebhart GF
    Brain Res; 1984 Jul; 305(1):77-87. PubMed ID: 6744063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons.
    Budai D; Fields HL
    J Neurophysiol; 1998 Feb; 79(2):677-87. PubMed ID: 9463431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.