BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19525562)

  • 1. Central nervous system regeneration: from leech to opossum.
    Mladinic M; Muller KJ; Nicholls JG
    J Physiol; 2009 Jun; 587(Pt 12):2775-82. PubMed ID: 19525562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal repair in immature animals: a novel approach using the South American opossum Monodelphis domestica.
    Fry EJ; Saunders NR
    Clin Exp Pharmacol Physiol; 2000 Jul; 27(7):542-7. PubMed ID: 10874515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of the central nervous system: lessons from lesions in leeches.
    von Bernhardi R; Muller KJ
    J Neurobiol; 1995 Jul; 27(3):353-66. PubMed ID: 7673894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The critical period for repair of CNS of neonatal opossum (Monodelphis domestica) in culture: correlation with development of glial cells, myelin and growth-inhibitory molecules.
    Varga ZM; Bandtlow CE; Erulkar SD; Schwab ME; Nicholls JG
    Eur J Neurosci; 1995 Oct; 7(10):2119-29. PubMed ID: 8542069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair and regeneration of functional synaptic connections: cellular and molecular interactions in the leech.
    Duan Y; Panoff J; Burrell BD; Sahley CL; Muller KJ
    Cell Mol Neurobiol; 2005 Mar; 25(2):441-50. PubMed ID: 16047551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in mRNA content of developing opossum spinal cord at stages when regeneration can and cannot occur after injury.
    Mladinic M; Wintzer M
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):317-24. PubMed ID: 12589930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-establishment of direct synaptic connections between sensory axons and motoneurons after lesions of neonatal opossum CNS (Monodelphis domestica) in culture.
    Lepre M; Fernandéz J; Nicholls JG
    Eur J Neurosci; 1998 Aug; 10(8):2500-10. PubMed ID: 9767381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional visualization of the distribution, growth, and regeneration of monoaminergic neurons in whole mounts of immature mammalian CNS.
    Luque JM; Biou V; Nicholls JG
    J Comp Neurol; 1998 Jan; 390(3):427-38. PubMed ID: 9455902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of genes at stages when regeneration can and cannot occur after injury to immature mammalian spinal cord.
    Mladinic M; Wintzer M; Del Bel E; Casseler C; Lazarevic D; Crovella S; Gustincich S; Cattaneo A; Nicholls J
    Cell Mol Neurobiol; 2005 Mar; 25(2):407-26. PubMed ID: 16047549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of opossum Monodelphis domestica spinal cord reveals the changes of proteins related to neurodegenerative diseases during developmental period when neuroregeneration stops being possible.
    Tomljanović I; Petrović A; Ban J; Mladinic M
    Biochem Biophys Res Commun; 2022 Jan; 587():85-91. PubMed ID: 34864550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of immature mammalian spinal cord after injury.
    Nicholls J; Saunders N
    Trends Neurosci; 1996 Jun; 19(6):229-34. PubMed ID: 8761958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes of gene expression after spinal cord injury in neonatal opossums.
    Mladinic M; Lefèvre C; Del Bel E; Nicholls J; Digby M
    Brain Res; 2010 Dec; 1363():20-39. PubMed ID: 20849836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoration of conduction and growth of axons through injured spinal cord of neonatal opossum in culture.
    Treherne JM; Woodward SK; Varga ZM; Ritchie JM; Nicholls JG
    Proc Natl Acad Sci U S A; 1992 Jan; 89(1):431-4. PubMed ID: 1729714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why does the central nervous system not regenerate after injury?
    Nicholls JG; Adams WB; Eugenin J; Geiser R; Lepre M; Luque JM; Wintzer M
    Surv Ophthalmol; 1999 Jun; 43 Suppl 1():S136-41. PubMed ID: 10416756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for identifying genes that play a role in spinal cord regeneration.
    Wintzer M; Mladinic M; Lazarevic D; Casseler C; Cattaneo A; Nicholls J
    J Anat; 2004 Jan; 204(1):3-11. PubMed ID: 14690473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tinkering with successful synapse regeneration in the leech: adding insult to injury.
    Muller KJ; McGlade-McCulloh E; Mason A
    J Exp Biol; 1987 Sep; 132():207-21. PubMed ID: 3323400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of axons and synaptic connections by touch sensory neurons in the leech central nervous system.
    Macagno ER; Muller KJ; DeRiemer SA
    J Neurosci; 1985 Sep; 5(9):2510-21. PubMed ID: 2993546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myelin-associated neurite growth-inhibitory proteins and suppression of regeneration of immature mammalian spinal cord in culture.
    Varga ZM; Schwab ME; Nicholls JG
    Proc Natl Acad Sci U S A; 1995 Nov; 92(24):10959-63. PubMed ID: 7479918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in cyclic AMP levels in the developing opossum spinal cord at the time when regeneration stops being possible.
    Mladinic M
    Cell Mol Neurobiol; 2007 Nov; 27(7):883-8. PubMed ID: 17882545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of spinal cord in the isolated CNS of a neonatal mammal (the opossum Monodelphis domestica) maintained in longterm culture.
    Møllgård K; Balslev Y; Janas MS; Treherne JM; Saunders NR; Nichols JG
    J Neurocytol; 1994 Mar; 23(3):151-65. PubMed ID: 8006676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.