BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19526267)

  • 1. Otoacoustic emission theories and behavioral estimates of human basilar membrane motion are mutually consistent.
    Lopez-Poveda EA; Johannesen PT
    J Assoc Res Otolaryngol; 2009 Dec; 10(4):511-23. PubMed ID: 19526267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ["Single generator distortion products"(sgDPOAE). Precise measurements of distortion product otoacoustic emissions by three-tone stimulations].
    Plinkert PK; Heitmann J; Waldmann B
    HNO; 1997 Nov; 45(11):909-14. PubMed ID: 9476103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forward-masking recovery and the assumptions of the temporal masking curve method of inferring cochlear compression.
    Pérez-González P; Johannesen PT; Lopez-Poveda EA
    Trends Hear; 2014 Dec; 19():. PubMed ID: 25534365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correspondence between behavioral and individually "optimized" otoacoustic emission estimates of human cochlear input/output curves.
    Johannesen PT; Lopez-Poveda EA
    J Acoust Soc Am; 2010 Jun; 127(6):3602-13. PubMed ID: 20550260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual differences in behavioral estimates of cochlear nonlinearities.
    Poling GL; Horwitz AR; Ahlstrom JB; Dubno JR
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):91-108. PubMed ID: 21938546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maturation of cochlear nonlinearity as measured by distortion product otoacoustic emission suppression growth in humans.
    Abdala C; Chatterjee M
    J Acoust Soc Am; 2003 Aug; 114(2):932-43. PubMed ID: 12942974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Minor Conductive Hearing Loss in Humans Using Distortion Product Otoacoustic Emissions.
    Marcrum SC; Kummer P; Steffens T
    Ear Hear; 2017; 38(4):391-398. PubMed ID: 28169838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breaking away: violation of distortion emission phase-frequency invariance at low frequencies.
    Dhar S; Rogers A; Abdala C
    J Acoust Soc Am; 2011 May; 129(5):3115-22. PubMed ID: 21568414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling DPOAE input/output function compression: comparisons with hearing thresholds.
    Bhagat SP
    J Am Acad Audiol; 2014 Sep; 25(8):746-59. PubMed ID: 25380121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech.
    Dubno JR; Horwitz AR; Ahlstrom JB
    Ear Hear; 2007 Feb; 28(1):2-17. PubMed ID: 17204895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distortion product otoacoustic emissions and sensorineural hearing loss.
    Moulin A; Bera JC; Collet L
    Audiology; 1994; 33(6):305-26. PubMed ID: 7741665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions.
    Ortmann AJ; Abdala C
    Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring distortion product otoacoustic emissions using continuously sweeping primaries.
    Long GR; Talmadge CL; Lee J
    J Acoust Soc Am; 2008 Sep; 124(3):1613-26. PubMed ID: 19045653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compression estimates using behavioral and otoacoustic emission measures.
    Williams EJ; Bacon SP
    Hear Res; 2005 Mar; 201(1-2):44-54. PubMed ID: 15721560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input-output functions of the nonlinear-distortion component of distortion-product otoacoustic emissions in normal and hearing-impaired human ears.
    Zelle D; Lorenz L; Thiericke JP; Gummer AW; Dalhoff E
    J Acoust Soc Am; 2017 May; 141(5):3203. PubMed ID: 28599560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.