BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 19526364)

  • 21. Stable expression of human homomeric and heteromeric AMPA receptor subunits in HEK293 cells.
    Nishimura S; Iizuka M; Wakamori M; Akiba I; Imoto K; Barsoumian EL
    Recept Channels; 2000; 7(2):139-50. PubMed ID: 10952090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of CNQX and MPEP on sensitization to the rewarding effects of morphine.
    Manzanedo C; Aguilar MA; Miñarro J; Rodríguez-Arias M
    Eur J Pharmacol; 2011 Mar; 654(1):42-6. PubMed ID: 21172339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection.
    Radenovic L; Selakovic V
    Brain Res Bull; 2005 Sep; 67(1-2):133-41. PubMed ID: 16140172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pharmacological and molecular characterization of glutamate receptors in the MIN6 pancreatic beta-cell line.
    Morley P; MacLean S; Gendron TF; Small DL; Tremblay R; Durkin JP; Mealing G
    Neurol Res; 2000 Jun; 22(4):379-85. PubMed ID: 10874687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of K+ conductance by metabotropic glutamate receptor in acutely dissociated large cholinergic neurons of rat caudate putamen.
    Takeshita Y; Harata N; Akaike N
    J Neurophysiol; 1996 Sep; 76(3):1545-58. PubMed ID: 8890274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia.
    Niedzielski AS; Wenthold RJ
    J Neurosci; 1995 Mar; 15(3 Pt 2):2338-53. PubMed ID: 7891171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Group I metabotropic glutamate receptors mediate an inward current in rat substantia nigra dopamine neurons that is independent from calcium mobilization.
    Guatteo E; Mercuri NB; Bernardi G; Knöpfel T
    J Neurophysiol; 1999 Oct; 82(4):1974-81. PubMed ID: 10515987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes.
    Matute C; Sánchez-Gómez MV; Martínez-Millán L; Miledi R
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8830-5. PubMed ID: 9238063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabotropic glutamate receptor activation enhances the activities of two types of Ca2+-activated k+ channels in rat hippocampal astrocytes.
    Gebremedhin D; Yamaura K; Zhang C; Bylund J; Koehler RC; Harder DR
    J Neurosci; 2003 Mar; 23(5):1678-87. PubMed ID: 12629172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The lethal expression of the GluR2flip/GluR4flip AMPA receptor in HEK293 cells.
    Iizuka M; Nishimura S; Wakamori M; Akiba I; Imoto K; Barsoumian EL
    Eur J Neurosci; 2000 Nov; 12(11):3900-8. PubMed ID: 11069585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lead-Induced ERK Activation Is Mediated by GluR2 Non-containing AMPA Receptor in Cortical Neurons.
    Ishida K; Kotake Y; Sanoh S; Ohta S
    Biol Pharm Bull; 2017; 40(3):303-309. PubMed ID: 28250271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional NMDA receptor channels generated by NMDAR2B gene transfer in rat cerebellar Purkinje cells.
    Kakegawa W; Tsuzuki K; Iino M; Ozawa S
    Eur J Neurosci; 2003 Feb; 17(4):887-91. PubMed ID: 12603279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionotropic glutamate receptor expression in preganglionic neurons of the rat inferior salivatory nucleus.
    Kim M; Chiego DJ; Bradley RM
    Auton Neurosci; 2008 Feb; 138(1-2):83-90. PubMed ID: 18096442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stargazin modulates AMPA receptor antagonism.
    Cokić B; Stein V
    Neuropharmacology; 2008 Jun; 54(7):1062-70. PubMed ID: 18378265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in culture.
    Van Den Pol AN; Obrietan K; Belousov A
    Neuroscience; 1996 Oct; 74(3):653-74. PubMed ID: 8884763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia.
    Porter RH; Eastwood SL; Harrison PJ
    Brain Res; 1997 Mar; 751(2):217-31. PubMed ID: 9099808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression and heteromeric interactions of non-N-methyl-D-aspartate glutamate receptor subunits in the developing and adult cerebellum.
    Ripellino JA; Neve RL; Howe JR
    Neuroscience; 1998 Jan; 82(2):485-97. PubMed ID: 9466455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 4-Alkylated homoibotenic acid (HIBO) analogues: versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes.
    Madsen U; Pickering DS; Nielsen B; Bräuner-Osborne H
    Neuropharmacology; 2005; 49 Suppl 1():114-9. PubMed ID: 15996690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneity and potentiation of AMPA type of glutamate receptors in rat cultured microglia.
    Hagino Y; Kariura Y; Manago Y; Amano T; Wang B; Sekiguchi M; Nishikawa K; Aoki S; Wada K; Noda M
    Glia; 2004 Jul; 47(1):68-77. PubMed ID: 15139014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elevated glucose changes the expression of ionotropic glutamate receptor subunits and impairs calcium homeostasis in retinal neural cells.
    Santiago AR; Rosa SC; Santos PF; Cristóvão AJ; Barber AJ; Ambrósio AF
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):4130-7. PubMed ID: 16936133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.