These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 19526389)
1. The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Prather WR; Toren A; Meiron M; Ofir R; Tschope C; Horwitz EM Cytotherapy; 2009; 11(4):427-34. PubMed ID: 19526389 [TBL] [Abstract][Full Text] [Related]
2. Safety and biodistribution profile of placental-derived mesenchymal stromal cells (PLX-PAD) following intramuscular delivery. Ramot Y; Meiron M; Toren A; Steiner M; Nyska A Toxicol Pathol; 2009 Aug; 37(5):606-16. PubMed ID: 19478280 [TBL] [Abstract][Full Text] [Related]
3. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Ishikane S; Ohnishi S; Yamahara K; Sada M; Harada K; Mishima K; Iwasaki K; Fujiwara M; Kitamura S; Nagaya N; Ikeda T Stem Cells; 2008 Oct; 26(10):2625-33. PubMed ID: 18669910 [TBL] [Abstract][Full Text] [Related]
4. Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Finney MR; Greco NJ; Haynesworth SE; Martin JM; Hedrick DP; Swan JZ; Winter DG; Kadereit S; Joseph ME; Fu P; Pompili VJ; Laughlin MJ Biol Blood Marrow Transplant; 2006 May; 12(5):585-93. PubMed ID: 16635794 [TBL] [Abstract][Full Text] [Related]
5. Therapeutic angiogenesis of bone marrow mononuclear cells (MNCs) and peripheral blood MNCs: transplantation for ischemic hindlimb. Zhang H; Zhang N; Li M; Feng H; Jin W; Zhao H; Chen X; Tian L Ann Vasc Surg; 2008 Mar; 22(2):238-47. PubMed ID: 18083329 [TBL] [Abstract][Full Text] [Related]
6. Therapeutic effects of autologous bone marrow cells and metabolic intervention in the ischemic hindlimb of spontaneously hypertensive rats involve reduced cell senescence and CXCR4/Akt/eNOS pathways. de Nigris F; Balestrieri ML; Williams-Ignarro S; D'Armiento FP; Lerman LO; Byrns R; Crimi E; Palagiano A; Fatigati G; Ignarro LJ; Napoli C J Cardiovasc Pharmacol; 2007 Oct; 50(4):424-33. PubMed ID: 18049311 [TBL] [Abstract][Full Text] [Related]
7. Placenta-derived PLX-PAD mesenchymal-like stromal cells are efficacious in rescuing blood flow in hind limb ischemia mouse model by a dose- and site-dependent mechanism of action. Zahavi-Goldstein E; Blumenfeld M; Fuchs-Telem D; Pinzur L; Rubin S; Aberman Z; Sher N; Ofir R Cytotherapy; 2017 Dec; 19(12):1438-1446. PubMed ID: 29122516 [TBL] [Abstract][Full Text] [Related]
8. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Iwase T; Nagaya N; Fujii T; Itoh T; Murakami S; Matsumoto T; Kangawa K; Kitamura S Cardiovasc Res; 2005 Jun; 66(3):543-51. PubMed ID: 15914119 [TBL] [Abstract][Full Text] [Related]
9. Cardioprotection by placenta-derived stromal cells in a murine myocardial infarction model. Roy R; Brodarac A; Kukucka M; Kurtz A; Becher PM; Jülke K; Choi YH; Pinzur L; Chajut A; Tschöpe C; Stamm C J Surg Res; 2013 Nov; 185(1):70-83. PubMed ID: 23830369 [TBL] [Abstract][Full Text] [Related]
10. Synergistic angiogenic effect of codelivering fibroblast growth factor 2 and granulocyte-colony stimulating factor from fibrin scaffolds and bone marrow transplantation in critical limb ischemia. Layman H; Rahnemai-Azar AA; Pham SM; Tsechpenakis G; Andreopoulos FM Tissue Eng Part A; 2011 Jan; 17(1-2):243-54. PubMed ID: 20712534 [TBL] [Abstract][Full Text] [Related]
11. Adipose-derived stromal cells cultured in a low-serum medium, but not bone marrow-derived stromal cells, impede xenoantibody production. Saka Y; Furuhashi K; Katsuno T; Kim H; Ozaki T; Iwasaki K; Haneda M; Sato W; Tsuboi N; Ito Y; Matsuo S; Kobayashi T; Maruyama S Xenotransplantation; 2011; 18(3):196-208. PubMed ID: 21696449 [TBL] [Abstract][Full Text] [Related]
12. Selection of CD271(+) cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow. Poloni A; Maurizi G; Rosini V; Mondini E; Mancini S; Discepoli G; Biasio S; Battaglini G; Felicetti S; Berardinelli E; Serrani F; Leoni P Cytotherapy; 2009; 11(2):153-62. PubMed ID: 19301169 [TBL] [Abstract][Full Text] [Related]
13. Immunosuppression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells. Jones BJ; Brooke G; Atkinson K; McTaggart SJ Placenta; 2007; 28(11-12):1174-81. PubMed ID: 17714779 [TBL] [Abstract][Full Text] [Related]
14. Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton's jelly into hepatocyte-like cells. Zhang YN; Lie PC; Wei X Cytotherapy; 2009; 11(5):548-58. PubMed ID: 19657806 [TBL] [Abstract][Full Text] [Related]
15. Altered migration and adhesion potential of pro-neurally converted human bone marrow stromal cells. Habisch HJ; Fiedler J; Ludolph AC; Storch A; Brenner RE Cytotherapy; 2008; 10(8):824-33. PubMed ID: 19016370 [TBL] [Abstract][Full Text] [Related]
16. Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Montesinos JJ; Flores-Figueroa E; Castillo-Medina S; Flores-Guzmán P; Hernández-Estévez E; Fajardo-Orduña G; Orozco S; Mayani H Cytotherapy; 2009; 11(2):163-76. PubMed ID: 19152152 [TBL] [Abstract][Full Text] [Related]