These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 19526467)

  • 1. Cellulose hydrolysis in evolving substrate morphologies II: Numerical results and analysis.
    Zhou W; Hao Z; Xu Y; Schüttler HB
    Biotechnol Bioeng; 2009 Oct; 104(2):275-89. PubMed ID: 19526467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose hydrolysis in evolving substrate morphologies I: A general modeling formalism.
    Zhou W; Schüttler HB; Hao Z; Xu Y
    Biotechnol Bioeng; 2009 Oct; 104(2):261-74. PubMed ID: 19575461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose hydrolysis in evolving substrate morphologies III: time-scale analysis.
    Zhou W; Xu Y; Schüttler HB
    Biotechnol Bioeng; 2010 Oct; 107(2):224-34. PubMed ID: 20518068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functionally based model for hydrolysis of cellulose by fungal cellulase.
    Zhang YH; Lynd LR
    Biotechnol Bioeng; 2006 Aug; 94(5):888-98. PubMed ID: 16685742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling intrinsic kinetics of enzymatic cellulose hydrolysis.
    Peri S; Karra S; Lee YY; Karim MN
    Biotechnol Prog; 2007; 23(3):626-37. PubMed ID: 17465526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems.
    Zhang YH; Lynd LR
    Biotechnol Bioeng; 2004 Dec; 88(7):797-824. PubMed ID: 15538721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On a novel mechanistic model for simultaneous enzymatic hydrolysis of cellulose and hemicellulose considering morphology.
    Zhang Y; Xu B; Zhou W
    Biotechnol Bioeng; 2014 Sep; 111(9):1767-81. PubMed ID: 24668243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading.
    Wang W; Kang L; Wei H; Arora R; Lee YY
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1139-49. PubMed ID: 21340535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic model of the enzymatic hydrolysis of cellulose.
    Levine SE; Fox JM; Blanch HW; Clark DS
    Biotechnol Bioeng; 2010 Sep; 107(1):37-51. PubMed ID: 20506540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: depolymerization by EGI and CBHI.
    Griggs AJ; Stickel JJ; Lischeske JJ
    Biotechnol Bioeng; 2012 Mar; 109(3):665-75. PubMed ID: 22034153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of enzymatic hydrolysis of cellulose: analytical description of a mechanistic model.
    Okazaki M; Moo-Young M
    Biotechnol Bioeng; 1978 May; 20(5):637-63. PubMed ID: 417746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based fed-batch for high-solids enzymatic cellulose hydrolysis.
    Hodge DB; Karim MN; Schell DJ; McMillan JD
    Appl Biochem Biotechnol; 2009 Jan; 152(1):88-107. PubMed ID: 18512162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of cellulose accessibility, hydrolysability and reactivity as the major limitations in the enzymatic hydrolysis of cellulose.
    Bansal P; Vowell BJ; Hall M; Realff MJ; Lee JH; Bommarius AS
    Bioresour Technol; 2012 Mar; 107():243-50. PubMed ID: 22244954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate.
    Chundawat SP; Bellesia G; Uppugundla N; da Costa Sousa L; Gao D; Cheh AM; Agarwal UP; Bianchetti CM; Phillips GN; Langan P; Balan V; Gnanakaran S; Dale BE
    J Am Chem Soc; 2011 Jul; 133(29):11163-74. PubMed ID: 21661764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.
    Zhao H; Jones CL; Baker GA; Xia S; Olubajo O; Person VN
    J Biotechnol; 2009 Jan; 139(1):47-54. PubMed ID: 18822323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic modeling of cellulose hydrolysis with first order inactivation of adsorbed cellulase.
    Ye Z; Berson RE
    Bioresour Technol; 2011 Dec; 102(24):11194-9. PubMed ID: 22001057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion.
    Yang B; Willies DM; Wyman CE
    Biotechnol Bioeng; 2006 Aug; 94(6):1122-8. PubMed ID: 16732604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose Ibeta: the enzyme-substrate complex.
    Zhong L; Matthews JF; Hansen PI; Crowley MF; Cleary JM; Walker RC; Nimlos MR; Brooks CL; Adney WS; Himmel ME; Brady JW
    Carbohydr Res; 2009 Oct; 344(15):1984-92. PubMed ID: 19699474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp.
    Pu Y; Ziemer C; Ragauskas AJ
    Carbohydr Res; 2006 Apr; 341(5):591-7. PubMed ID: 16442511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.