BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19526503)

  • 1. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system.
    Qin L; van Gelderen P; Derbyshire JA; Jin F; Lee J; de Zwart JA; Tao Y; Duyn JH
    Magn Reson Med; 2009 Oct; 62(4):924-34. PubMed ID: 19526503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid prospective and retrospective head motion correction to mitigate cross-calibration errors.
    Aksoy M; Forman C; Straka M; Çukur T; Hornegger J; Bammer R
    Magn Reson Med; 2012 May; 67(5):1237-51. PubMed ID: 21826729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective head motion compensation for MRI by updating the gradients and radio frequency during data acquisition.
    Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):482-9. PubMed ID: 16685881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective real-time correction for arbitrary head motion using active markers.
    Ooi MB; Krueger S; Thomas WJ; Swaminathan SV; Brown TR
    Magn Reson Med; 2009 Oct; 62(4):943-54. PubMed ID: 19488989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-encoded marker for optical prospective head motion correction in MRI.
    Forman C; Aksoy M; Hornegger J; Bammer R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):259-66. PubMed ID: 20879239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marker-free optical stereo motion tracking for in-bore MRI and PET-MRI application.
    Kyme AZ; Aksoy M; Henry DL; Bammer R; Maclaren J
    Med Phys; 2020 Aug; 47(8):3321-3331. PubMed ID: 32329076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-encoded marker for optical prospective head motion correction in MRI.
    Forman C; Aksoy M; Hornegger J; Bammer R
    Med Image Anal; 2011 Oct; 15(5):708-19. PubMed ID: 21708477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device.
    Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G
    Acad Radiol; 2006 Sep; 13(9):1093-103. PubMed ID: 16935721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design and implementation of a motion correction scheme for neurological PET.
    Bloomfield PM; Spinks TJ; Reed J; Schnorr L; Westrip AM; Livieratos L; Fulton R; Jones T
    Phys Med Biol; 2003 Apr; 48(8):959-78. PubMed ID: 12741495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time correction by optical tracking with integrated geometric distortion correction for reducing motion artifacts in functional MRI.
    Rotenberg D; Chiew M; Ranieri S; Tam F; Chopra R; Graham SJ
    Magn Reson Med; 2013 Mar; 69(3):734-48. PubMed ID: 22585554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system.
    Maziero D; Velasco TR; Hunt N; Payne E; Lemieux L; Salmon CEG; Carmichael DW
    Neuroimage; 2016 Sep; 138():13-27. PubMed ID: 27157789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of calibration errors in prospective motion correction using external tracking.
    Zahneisen B; Keating B; Ernst T
    Magn Reson Med; 2014 Aug; 72(2):381-8. PubMed ID: 24123287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of prospective head motion correction with NMR field probes and an optical tracking system.
    Eschelbach M; Aghaeifar A; Bause J; Handwerker J; Anders J; Engel EM; Thielscher A; Scheffler K
    Magn Reson Med; 2019 Jan; 81(1):719-729. PubMed ID: 30058220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.
    Todd N; Josephs O; Callaghan MF; Lutti A; Weiskopf N
    Neuroimage; 2015 Jun; 113():1-12. PubMed ID: 25783205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical tracking with two markers for robust prospective motion correction for brain imaging.
    Singh A; Zahneisen B; Keating B; Herbst M; Chang L; Zaitsev M; Ernst T
    MAGMA; 2015 Dec; 28(6):523-34. PubMed ID: 26121941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additional sampling directions improve detection range of wireless radiofrequency probes.
    Hoffmann M; Mada M; Carpenter TA; Sawiak SJ; Williams GB
    Magn Reson Med; 2016 Sep; 76(3):913-8. PubMed ID: 26418189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast noniterative calibration of an external motion tracking device.
    Zahneisen B; Lovell-Smith C; Herbst M; Zaitsev M; Speck O; Armstrong B; Ernst T
    Magn Reson Med; 2014 Apr; 71(4):1489-500. PubMed ID: 23788117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospective motion correction for magnetic resonance spectroscopy using single camera Retro-Grate reflector optical tracking.
    Andrews-Shigaki BC; Armstrong BS; Zaitsev M; Ernst T
    J Magn Reson Imaging; 2011 Feb; 33(2):498-504. PubMed ID: 21274994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prototype MR insertable brain PET using tileable GAPD arrays.
    Hong KJ; Choi Y; Jung JH; Kang J; Hu W; Lim HK; Huh Y; Kim S; Jung JW; Kim KB; Song MS; Park HW
    Med Phys; 2013 Apr; 40(4):042503. PubMed ID: 23556919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized double-acquisition imaging for radiofrequency inhomogeneity mitigation in high-field MRI: experimental proof and performance analysis.
    Ferrand G; Luong M; Amadon A; Cloos MA; Giacomini E; Darrasse L
    Magn Reson Med; 2012 Jan; 67(1):175-82. PubMed ID: 21678489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.