These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 19526549)

  • 1. Oxalic acid-mediated stress responses in Brassica napus L.
    Liang Y; Strelkov SE; Kav NN
    Proteomics; 2009 Jun; 9(11):3156-73. PubMed ID: 19526549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge.
    Liang Y; Srivastava S; Rahman MH; Strelkov SE; Kav NN
    J Agric Food Chem; 2008 Mar; 56(6):1963-76. PubMed ID: 18290614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo measurements of changes in pH triggered by oxalic acid in leaf tissue of transgenic oilseed rape.
    Zou QJ; Liu SY; Dong XY; Bi YH; Cao YC; Xu Q; Zhao YD; Chen H
    Phytochem Anal; 2007; 18(4):341-6. PubMed ID: 17623369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S
    Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of jujube fruits to exogenous oxalic acid treatment based on proteomic analysis.
    Wang Q; Lai T; Qin G; Tian S
    Plant Cell Physiol; 2009 Feb; 50(2):230-42. PubMed ID: 19068492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus.
    Sašek V; Nováková M; Jindřichová B; Bóka K; Valentová O; Burketová L
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1238-50. PubMed ID: 22624662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the proteome of Brassica napus phloem sap.
    Giavalisco P; Kapitza K; Kolasa A; Buhtz A; Kehr J
    Proteomics; 2006 Feb; 6(3):896-909. PubMed ID: 16400686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum.
    Fan Y; Du K; Gao Y; Kong Y; Chu C; Sokolov V; Wang Y
    Genetika; 2013 Apr; 49(4):439-47. PubMed ID: 23866620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34.
    Segarra G; Casanova E; Bellido D; Odena MA; Oliveira E; Trillas I
    Proteomics; 2007 Nov; 7(21):3943-52. PubMed ID: 17902191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteomic analysis of canola leaves under salinity stress.
    Bandehagh A; Salekdeh GH; Toorchi M; Mohammadi A; Komatsu S
    Proteomics; 2011 May; 11(10):1965-75. PubMed ID: 21480525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction.
    Fagundes-Nacarath IRF; Debona D; Rodrigues FA
    Plant Physiol Biochem; 2018 Aug; 129():109-121. PubMed ID: 29870862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.).
    Cui J; Zhang R; Wu GL; Zhu HM; Yang H
    Arch Environ Contam Toxicol; 2010 Jul; 59(1):100-8. PubMed ID: 19967348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development.
    Kim KS; Min JY; Dickman MB
    Mol Plant Microbe Interact; 2008 May; 21(5):605-12. PubMed ID: 18393620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsensor in vivo monitoring of oxidative burst in oilseed rape (Brassica napus L.) leaves infected by Sclerotinia sclerotiorum.
    Xu Q; Liu SY; Zou QJ; Guo XL; Dong XY; Li PW; Song DY; Chen H; Zhao YD
    Anal Chim Acta; 2009 Jan; 632(1):21-5. PubMed ID: 19100878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards identifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans: a proteomics-based approach.
    Sharma N; Hotte N; Rahman MH; Mohammadi M; Deyholos MK; Kav NN
    Proteomics; 2008 Sep; 8(17):3516-35. PubMed ID: 18668695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum.
    Rietz S; Bernsdorff FE; Cai D
    J Exp Bot; 2012 Sep; 63(15):5507-19. PubMed ID: 22888126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome Changes Reveal the Protective Roles of Exogenous Citric Acid in Alleviating Cu Toxicity in
    Ju YH; Roy SK; Roy Choudhury A; Kwon SJ; Choi JY; Rahman MA; Katsube-Tanaka T; Shiraiwa T; Lee MS; Cho K; Woo SH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deamination role of inducible glutamate dehydrogenase isoenzyme 7 in Brassica napus leaf protoplasts.
    Watanabe M; Yumi O; Itoh Y; Yasuda K; Kamachi K; Ratcliffe RG
    Phytochemistry; 2011 May; 72(7):587-93. PubMed ID: 21353684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum.
    Yajima W; Kav NN
    Proteomics; 2006 Nov; 6(22):5995-6007. PubMed ID: 17051649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.