BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19526558)

  • 21. Heat shock factor 1 is a key regulator of the stress response in Chlamydomonas.
    Schulz-Raffelt M; Lodha M; Schroda M
    Plant J; 2007 Oct; 52(2):286-95. PubMed ID: 17711413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii.
    Naumann B; Busch A; Allmer J; Ostendorf E; Zeller M; Kirchhoff H; Hippler M
    Proteomics; 2007 Nov; 7(21):3964-79. PubMed ID: 17922516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii.
    Sugimoto K; Sato N; Tsuzuki M
    FEBS Lett; 2007 Sep; 581(23):4519-22. PubMed ID: 17765894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The small domain of cytochrome f from the psychrophile Chlamydomonas raudensis UWO 241 modulates the apparent molecular mass and decreases the accumulation of cytochrome f in the mesophile Chlamydomonas reinhardtii.
    Gudynaite-Savitch L; Loiselay C; Savitch LV; Simmonds J; Kohalmi SE; Choquet Y; Hüner NP
    Biochem Cell Biol; 2007 Oct; 85(5):616-27. PubMed ID: 17901903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chlamydomonas reinhardtii in the landscape of pigments.
    Grossman AR; Lohr M; Im CS
    Annu Rev Genet; 2004; 38():119-73. PubMed ID: 15568974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolism controls dimerization of the chloroplast FoF1 ATP synthase in Chlamydomonas reinhardtii.
    Schwassmann HJ; Rexroth S; Seelert H; Dencher NA
    FEBS Lett; 2007 Apr; 581(7):1391-6. PubMed ID: 17350625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of 2-D gels to identify novel protein-protein interactions in the cochlea.
    Kathiresan T; Harvey MC; Sokolowski BH
    Methods Mol Biol; 2009; 493():269-86. PubMed ID: 18839353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for a role of VIPP1 in the structural organization of the photosynthetic apparatus in Chlamydomonas.
    Nordhues A; Schöttler MA; Unger AK; Geimer S; Schönfelder S; Schmollinger S; Rütgers M; Finazzi G; Soppa B; Sommer F; Mühlhaus T; Roach T; Krieger-Liszkay A; Lokstein H; Crespo JL; Schroda M
    Plant Cell; 2012 Feb; 24(2):637-59. PubMed ID: 22307852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes.
    Keller LC; Romijn EP; Zamora I; Yates JR; Marshall WF
    Curr Biol; 2005 Jun; 15(12):1090-8. PubMed ID: 15964273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative proteomics of high light stress in the model alga Chlamydomonas reinhardtii.
    Förster B; Mathesius U; Pogson BJ
    Proteomics; 2006 Aug; 6(15):4309-20. PubMed ID: 16800035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mass spectrometric genomic data mining: Novel insights into bioenergetic pathways in Chlamydomonas reinhardtii.
    Allmer J; Naumann B; Markert C; Zhang M; Hippler M
    Proteomics; 2006 Dec; 6(23):6207-20. PubMed ID: 17078018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of singlet oxygen in chloroplast to nucleus retrograde signaling in Chlamydomonas reinhardtii.
    Fischer BB; Krieger-Liszkay A; Hideg E; Snyrychová I; Wiesendanger M; Eggen RI
    FEBS Lett; 2007 Dec; 581(29):5555-60. PubMed ID: 17997989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intermolecular protein cross-linking during acrolein toxicity: efficacy of carbonyl scavengers as inhibitors of heat shock protein-90 cross-linking in A549 cells.
    Burcham PC; Raso A; Thompson C; Tan D
    Chem Res Toxicol; 2007 Nov; 20(11):1629-37. PubMed ID: 17907782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Study of amino acid composition and biosynthesis of protein components of the membrane system of corn plastids during biogenesis of chloroplasts].
    Molchanov MI; Trusova VM; Shaposhnikov GL
    Biokhimiia; 1976 May; 41(5):926-32. PubMed ID: 1024593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chlamydomonas reinhardtii proteomics.
    Stauber EJ; Hippler M
    Plant Physiol Biochem; 2004 Dec; 42(12):989-1001. PubMed ID: 15707836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient translation destabilizes transcripts in chloroplasts of Chlamydomonas reinhardtii.
    Kato K; Ishikura K; Kasai S; Shinmyo A
    J Biosci Bioeng; 2006 Jun; 101(6):471-7. PubMed ID: 16935248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical approaches for discovering protein-protein interactions.
    Miernyk JA; Thelen JJ
    Plant J; 2008 Feb; 53(4):597-609. PubMed ID: 18269571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tryptic digestion of membrane proteins synthesized on chloroplast ribosomes in Chlamydomonas reinhardtii.
    Michaels A; Sexton JT
    Biochim Biophys Acta; 1980 Nov; 610(1):167-73. PubMed ID: 7437439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative proteomics using stable isotope labeling with amino acids in cell culture.
    Harsha HC; Molina H; Pandey A
    Nat Protoc; 2008; 3(3):505-16. PubMed ID: 18323819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions.
    Sinz A
    Mass Spectrom Rev; 2006; 25(4):663-82. PubMed ID: 16477643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.