BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19526562)

  • 1. A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture.
    Shah P; Gutierrez-Sanchez G; Orlando R; Bergmann C
    Proteomics; 2009 Jun; 9(11):3126-35. PubMed ID: 19526562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteomic analysis of Botrytis cinerea secretome.
    Shah P; Atwood JA; Orlando R; El Mubarek H; Podila GK; Davis MR
    J Proteome Res; 2009 Mar; 8(3):1123-30. PubMed ID: 19140674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
    Shah P; Powell AL; Orlando R; Bergmann C; Gutierrez-Sanchez G
    J Proteome Res; 2012 Apr; 11(4):2178-92. PubMed ID: 22364583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis.
    Li B; Wang W; Zong Y; Qin G; Tian S
    J Proteome Res; 2012 Aug; 11(8):4249-60. PubMed ID: 22746291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains.
    González-Fernández R; Aloria K; Valero-Galván J; Redondo I; Arizmendi JM; Jorrín-Novo JV
    J Proteomics; 2014 Jan; 97():195-221. PubMed ID: 23811051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Botrytis cinerea infection accelerates ripening and cell wall disassembly to promote disease in tomato fruit.
    Silva CJ; Adaskaveg JA; Mesquida-Pesci SD; Ortega-Salazar IB; Pattathil S; Zhang L; Hahn MG; van Kan JAL; Cantu D; Powell ALT; Blanco-Ulate B
    Plant Physiol; 2023 Jan; 191(1):575-590. PubMed ID: 36053186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca
    Kilani J; Davanture M; Simon A; Zivy M; Fillinger S
    J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Botrytis cinerea mediated cell wall degradation accelerates spike stalk browning in Munage grape.
    Li J; Wu Z; Zhu Z; Xu L; Wu B; Li J
    J Food Biochem; 2022 Oct; 46(10):e14271. PubMed ID: 35715997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation.
    Escobar-Niño A; Liñeiro E; Amil F; Carrasco R; Chiva C; Fuentes C; Blanco-Ulate B; Cantoral Fernández JM; Sabidó E; Fernández-Acero FJ
    Sci Rep; 2019 Jul; 9(1):9860. PubMed ID: 31285484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative d-galacturonate transporters.
    Zhang L; Hua C; Stassen JHM; Chatterjee S; Cornelissen M; van Kan JAL
    Fungal Genet Biol; 2014 Nov; 72():182-191. PubMed ID: 24140151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea.
    Wubben JP; Mulder W; ten Have A; van Kan JA; Visser J
    Appl Environ Microbiol; 1999 Apr; 65(4):1596-602. PubMed ID: 10103256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment.
    Castillo L; Plaza V; Larrondo LF; Canessa P
    Curr Protein Pept Sci; 2017; 18(10):976-989. PubMed ID: 27526927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens.
    Raiola A; Lionetti V; Elmaghraby I; Immerzeel P; Mellerowicz EJ; Salvi G; Cervone F; Bellincampi D
    Mol Plant Microbe Interact; 2011 Apr; 24(4):432-40. PubMed ID: 21171891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of two isozymes of polygalacturonase from Botrytis cinerea. Effect of calcium ions on polygalacturonase activity.
    Cabanne C; Donèche B
    Microbiol Res; 2002; 157(3):183-9. PubMed ID: 12398287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts.
    Blanco-Ulate B; Morales-Cruz A; Amrine KC; Labavitch JM; Powell AL; Cantu D
    Front Plant Sci; 2014; 5():435. PubMed ID: 25232357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation.
    Fernández-Acero FJ; Colby T; Harzen A; Cantoral JM; Schmidt J
    Proteomics; 2009 May; 9(10):2892-902. PubMed ID: 19415670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in
    Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The D-galacturonic acid catabolic pathway in Botrytis cinerea.
    Zhang L; Thiewes H; van Kan JA
    Fungal Genet Biol; 2011 Oct; 48(10):990-7. PubMed ID: 21683149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of exo-polygalacturonases in Botrytis cinerea.
    Rha E; Park HJ; Kim MO; Chung YR; Lee CW; Kim JW
    FEMS Microbiol Lett; 2001 Jul; 201(1):105-9. PubMed ID: 11445175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depression of Fungal Polygalacturonase Activity in Solanum lycopersicum Contributes to Antagonistic Yeast-Mediated Fruit Immunity to Botrytis.
    Lu L; Ji L; Ma Q; Yang M; Li S; Tang Q; Qiao L; Li F; Guo Q; Wang C
    J Agric Food Chem; 2019 Mar; 67(12):3293-3304. PubMed ID: 30785743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.