These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 19526728)
1. Rab5 affinity chromatography without nonhydrolyzable GTP analogues. Hagiwara M; Kobayashi K; Tadokoro T; Yamamoto Y Z Naturforsch C J Biosci; 2009; 64(3-4):303-6. PubMed ID: 19526728 [TBL] [Abstract][Full Text] [Related]
2. Visualization of Rab5 activity in living cells by FRET microscopy and influence of plasma-membrane-targeted Rab5 on clathrin-dependent endocytosis. Galperin E; Sorkin A J Cell Sci; 2003 Dec; 116(Pt 23):4799-810. PubMed ID: 14600265 [TBL] [Abstract][Full Text] [Related]
3. Modulation of 5-hydroxytryptamine1A receptor density by nonhydrolyzable GTP analogues. Harrington MA; Peroutka SJ J Neurochem; 1990 Jan; 54(1):294-9. PubMed ID: 2136705 [TBL] [Abstract][Full Text] [Related]
4. Assay and stimulation of the Rab5 GTPase by the p85 alpha subunit of phosphatidylinositol 3-kinase. Anderson DH; Chamberlain MD Methods Enzymol; 2005; 403():552-61. PubMed ID: 16473619 [TBL] [Abstract][Full Text] [Related]
5. Purification of EEA1 from bovine brain cytosol using Rab5 affinity chromatography and activity assays. Christoforidis S; Zerial M Methods Enzymol; 2001; 329():120-32. PubMed ID: 11210528 [No Abstract] [Full Text] [Related]
6. Specific and effective interaction of a guanine nucleotide analogue with small G proteins. Hoffenberg S; Shannon TM; Noonan TP; Liu S; Daniel DS; Fishman JB; Rubins JB; Misra HK; Wright GE; Dickey BF Mol Pharmacol; 1996 Jan; 49(1):156-64. PubMed ID: 8569702 [TBL] [Abstract][Full Text] [Related]
8. Regulation of Ca2+ current in frog ventricular cardiomyocytes by guanosine 5'-triphosphate analogues and isoproterenol. Parsons TD; Hartzell HC J Gen Physiol; 1993 Sep; 102(3):525-49. PubMed ID: 8245822 [TBL] [Abstract][Full Text] [Related]
9. The Rab5 effector EEA1 is a core component of endosome docking. Christoforidis S; McBride HM; Burgoyne RD; Zerial M Nature; 1999 Feb; 397(6720):621-5. PubMed ID: 10050856 [TBL] [Abstract][Full Text] [Related]
11. Determination of Rab5 activity in the cell by effector pull-down assay. Qi Y; Liang Z; Wang Z; Lu G; Li G Methods Mol Biol; 2015; 1298():259-70. PubMed ID: 25800849 [TBL] [Abstract][Full Text] [Related]
12. Dimerization of small GTPase Rab5. Daitoku H; Isida J; Fujiwara K; Nakajima T; Fukamizu A Int J Mol Med; 2001 Oct; 8(4):397-404. PubMed ID: 11562778 [TBL] [Abstract][Full Text] [Related]
13. Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. Vitale G; Rybin V; Christoforidis S; Thornqvist P; McCaffrey M; Stenmark H; Zerial M EMBO J; 1998 Apr; 17(7):1941-51. PubMed ID: 9524117 [TBL] [Abstract][Full Text] [Related]
14. Phosphate-binding loop and Rab GTPase function: mutations at Ser29 and Ala30 of Rab5 lead to loss-of-function as well as gain-of-function phenotype. Li G; Liang Z Biochem J; 2001 May; 355(Pt 3):681-9. PubMed ID: 11311130 [TBL] [Abstract][Full Text] [Related]
15. GTPase mechanism and function: new insights from systematic mutational analysis of the phosphate-binding loop residue Ala30 of Rab5. Liang Z; Mather T; Li G Biochem J; 2000 Mar; 346 Pt 2(Pt 2):501-8. PubMed ID: 10677372 [TBL] [Abstract][Full Text] [Related]
16. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Ullrich O; Horiuchi H; Bucci C; Zerial M Nature; 1994 Mar; 368(6467):157-60. PubMed ID: 8139660 [TBL] [Abstract][Full Text] [Related]