These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 19527020)

  • 21. Indexing molecules with chemical graph identifiers.
    Gregori-Puigjané E; Garriga-Sust R; Mestres J
    J Comput Chem; 2011 Sep; 32(12):2638-46. PubMed ID: 21647928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wanted: new multicomponent reactions for generating libraries of polycyclic natural products.
    Ulaczyk-Lesanko A; Hall DG
    Curr Opin Chem Biol; 2005 Jun; 9(3):266-76. PubMed ID: 15939328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Voyages to the (un)known: adaptive design of bioactive compounds.
    Schneider G; Hartenfeller M; Reutlinger M; Tanrikulu Y; Proschak E; Schneider P
    Trends Biotechnol; 2009 Jan; 27(1):18-26. PubMed ID: 19004513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A screening study of ChirBase molecular database to explore the expanded chiral pool derived from the application of chiral chromatography.
    Piras P; Roussel C
    J Pharm Biomed Anal; 2008 Apr; 46(5):839-47. PubMed ID: 17942261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of biomolecular interactions with complex-binding small molecules.
    Cai Z; Greene MI; Berezov A
    Methods; 2008 Sep; 46(1):39-46. PubMed ID: 18571508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of structural diversity in combinatorial synthesis.
    Fergus S; Bender A; Spring DR
    Curr Opin Chem Biol; 2005 Jun; 9(3):304-9. PubMed ID: 15939333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting oral druglikeness by iterative stochastic elimination.
    Rayan A; Marcus D; Goldblum A
    J Chem Inf Model; 2010 Mar; 50(3):437-45. PubMed ID: 20170135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advancing chemistry and biology through diversity-oriented synthesis of natural product-like libraries.
    Shang S; Tan DS
    Curr Opin Chem Biol; 2005 Jun; 9(3):248-58. PubMed ID: 15939326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Working with small molecules: rules-of-thumb of "drug likeness".
    Zhang MQ
    Methods Mol Biol; 2012; 803():297-307. PubMed ID: 22065233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scaffold diversity of natural products: inspiration for combinatorial library design.
    Grabowski K; Baringhaus KH; Schneider G
    Nat Prod Rep; 2008 Oct; 25(5):892-904. PubMed ID: 18820757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 'Metabolite-likeness' as a criterion in the design and selection of pharmaceutical drug libraries.
    Dobson PD; Patel Y; Kell DB
    Drug Discov Today; 2009 Jan; 14(1-2):31-40. PubMed ID: 19049901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Explicit Diversity Index (EDI): a novel measure for assessing the diversity of compound databases.
    Papp A; Gulyas-Forró A; Gulyas Z; Dorman G; Urge L; Darvas F
    J Chem Inf Model; 2006; 46(5):1898-904. PubMed ID: 16995719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new rapid and effective chemistry space filter in recognizing a druglike database.
    Zheng S; Luo X; Chen G; Zhu W; Shen J; Chen K; Jiang H
    J Chem Inf Model; 2005; 45(4):856-62. PubMed ID: 16045278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designing active template molecules by combining computational de novo design and human chemist's expertise.
    Lameijer EW; Tromp RA; Spanjersberg RF; Brussee J; Ijzerman AP
    J Med Chem; 2007 Apr; 50(8):1925-32. PubMed ID: 17367122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible alignment of small molecules using the penalty method.
    Shin W; Hyun SA; Chae CH; Chon JK
    J Chem Inf Model; 2009 Aug; 49(8):1879-88. PubMed ID: 19645428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing synthetic accessibility of chemical compounds using machine learning methods.
    Podolyan Y; Walters MA; Karypis G
    J Chem Inf Model; 2010 Jun; 50(6):979-91. PubMed ID: 20536191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fragment-based de novo ligand design by multiobjective evolutionary optimization.
    Dey F; Caflisch A
    J Chem Inf Model; 2008 Mar; 48(3):679-90. PubMed ID: 18307332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of power-laws in chemical space.
    Benz RW; Swamidass SJ; Baldi P
    J Chem Inf Model; 2008 Jun; 48(6):1138-51. PubMed ID: 18522387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A large descriptor set and a probabilistic kernel-based classifier significantly improve druglikeness classification.
    Li Q; Bender A; Pei J; Lai L
    J Chem Inf Model; 2007; 47(5):1776-86. PubMed ID: 17718552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.