BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19527640)

  • 21. Broadband 75-85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor.
    Leberecht B; Kobylkov D; Karwinkel T; Döge S; Burnus L; Wong SY; Apte S; Haase K; Musielak I; Chetverikova R; Dautaj G; Bassetto M; Winklhofer M; Hore PJ; Mouritsen H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Jan; 208(1):97-106. PubMed ID: 35019998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radical-Pair-Based Magnetoreception Amplified by Radical Scavenging: Resilience to Spin Relaxation.
    Kattnig DR
    J Phys Chem B; 2017 Nov; 121(44):10215-10227. PubMed ID: 29028342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ascorbic acid may not be involved in cryptochrome-based magnetoreception.
    Nielsen C; Kattnig DR; Sjulstok E; Hore PJ; Solov'yov IA
    J R Soc Interface; 2017 Dec; 14(137):. PubMed ID: 29263128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Angular Precision of Radical Pair Compass Magnetoreceptors.
    Ren Y; Hiscock HG; Hore PJ
    Biophys J; 2021 Feb; 120(3):547-555. PubMed ID: 33421412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensing magnetic directions in birds: radical pair processes involving cryptochrome.
    Wiltschko R; Wiltschko W
    Biosensors (Basel); 2014 Sep; 4(3):221-42. PubMed ID: 25587420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light.
    Hiscock HG; Hiscock TW; Kattnig DR; Scrivener T; Lewis AM; Manolopoulos DE; Hore PJ
    Q Rev Biophys; 2019 Oct; 52():e9. PubMed ID: 31637984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-Time Oxygen and Superoxide Localization in
    Salerno KM; Domenico J; Le NQ; Balakrishnan K; McQuillen RJ; Stiles CD; Solov'yov IA; Martino CF
    J Chem Inf Model; 2023 Nov; 63(21):6756-6767. PubMed ID: 37874902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron transfer and spin dynamics of the radical-pair in the cryptochrome from Chlamydomonas reinhardtii by computational analysis.
    Hong G; Pachter R; Essen LO; Ritz T
    J Chem Phys; 2020 Feb; 152(6):065101. PubMed ID: 32061221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction kinetics and mechanism of magnetic field effects in cryptochrome.
    Solov'yov IA; Schulten K
    J Phys Chem B; 2012 Jan; 116(3):1089-99. PubMed ID: 22171949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic field effects on radical pair reactions: estimation of
    Wong SY; Benjamin P; Hore PJ
    Phys Chem Chem Phys; 2023 Jan; 25(2):975-982. PubMed ID: 36519379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Essential elements of radical pair magnetosensitivity in Drosophila.
    Bradlaugh AA; Fedele G; Munro AL; Hansen CN; Hares JM; Patel S; Kyriacou CP; Jones AR; Rosato E; Baines RA
    Nature; 2023 Mar; 615(7950):111-116. PubMed ID: 36813962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception.
    Dodson CA; Hore PJ; Wallace MI
    Trends Biochem Sci; 2013 Sep; 38(9):435-46. PubMed ID: 23938034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decrypting cryptochrome: revealing the molecular identity of the photoactivation reaction.
    Solov'yov IA; Domratcheva T; Moughal Shahi AR; Schulten K
    J Am Chem Soc; 2012 Oct; 134(43):18046-52. PubMed ID: 23009093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical compass model of avian magnetoreception.
    Maeda K; Henbest KB; Cintolesi F; Kuprov I; Rodgers CT; Liddell PA; Gust D; Timmel CR; Hore PJ
    Nature; 2008 May; 453(7193):387-90. PubMed ID: 18449197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model of the FAD redox cycle describes the dynamics of the effect of the geomagnetic field on the human visual system.
    Thoss F; Bartsch B
    Biol Cybern; 2017 Dec; 111(5-6):347-352. PubMed ID: 28776258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor.
    Maeda K; Robinson AJ; Henbest KB; Hogben HJ; Biskup T; Ahmad M; Schleicher E; Weber S; Timmel CR; Hore PJ
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):4774-9. PubMed ID: 22421133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The sensitivity of a radical pair compass magnetoreceptor can be significantly amplified by radical scavengers.
    Kattnig DR; Hore PJ
    Sci Rep; 2017 Sep; 7(1):11640. PubMed ID: 28912470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
    Langenbacher T; Immeln D; Dick B; Kottke T
    J Am Chem Soc; 2009 Oct; 131(40):14274-80. PubMed ID: 19754110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoactivation of cryptochromes from Drosophila melanogaster and Sylvia borin: insight into the chemical compass mechanism by computational investigation.
    Hong G; Pachter R
    J Phys Chem B; 2015 Mar; 119(10):3883-92. PubMed ID: 25710635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds.
    Nießner C; Denzau S; Stapput K; Ahmad M; Peichl L; Wiltschko W; Wiltschko R
    J R Soc Interface; 2013 Nov; 10(88):20130638. PubMed ID: 23966619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.