These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 19527667)
1. From powder to solution: hydration dependence of human hemoglobin dynamics correlated to body temperature. Stadler AM; Digel I; Embs JP; Unruh T; Tehei M; Zaccai G; Büldt G; Artmann GM Biophys J; 2009 Jun; 96(12):5073-81. PubMed ID: 19527667 [TBL] [Abstract][Full Text] [Related]
2. The impact of hydration water on the dynamics of side chains of hydrophobic peptides: from dry powder to highly concentrated solutions. Russo D; Teixeira J; Ollivier J J Chem Phys; 2009 Jun; 130(23):235101. PubMed ID: 19548762 [TBL] [Abstract][Full Text] [Related]
3. Temperature- and hydration-dependent internal dynamics of stripped human erythrocyte vesicles studied by incoherent neutron scattering. Combet S; Zanotti JM; Bellissent-Funel MC Biochim Biophys Acta; 2011 Feb; 1810(2):202-10. PubMed ID: 21059380 [TBL] [Abstract][Full Text] [Related]
4. High-resolution Neutron Spectroscopy to Study Picosecond-nanosecond Dynamics of Proteins and Hydration Water. Pounot K; Appel M; Beck C; Weik M; Schirò G; Fichou Y; Seydel T; Schreiber F J Vis Exp; 2022 Apr; (182):. PubMed ID: 35575532 [TBL] [Abstract][Full Text] [Related]
5. Hemoglobin dynamics in red blood cells: correlation to body temperature. Stadler AM; Digel I; Artmann GM; Embs JP; Zaccai G; Büldt G Biophys J; 2008 Dec; 95(11):5449-61. PubMed ID: 18708462 [TBL] [Abstract][Full Text] [Related]
6. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. Stadler AM; Garvey CJ; Bocahut A; Sacquin-Mora S; Digel I; Schneider GJ; Natali F; Artmann GM; Zaccai G J R Soc Interface; 2012 Nov; 9(76):2845-55. PubMed ID: 22696485 [TBL] [Abstract][Full Text] [Related]
7. Evolution of the internal dynamics of two globular proteins from dry powder to solution. Pérez J; Zanotti JM; Durand D Biophys J; 1999 Jul; 77(1):454-69. PubMed ID: 10388771 [TBL] [Abstract][Full Text] [Related]
8. Effects of hydration water on protein methyl group dynamics in solution. Russo D; Hura GL; Copley JR Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):040902. PubMed ID: 17500858 [TBL] [Abstract][Full Text] [Related]
9. Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics. Caronna C; Natali F; Cupane A Biophys Chem; 2005 Aug; 116(3):219-25. PubMed ID: 15908102 [TBL] [Abstract][Full Text] [Related]
10. Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Fitter J; Lechner RE; Dencher NA Biophys J; 1997 Oct; 73(4):2126-37. PubMed ID: 9336208 [TBL] [Abstract][Full Text] [Related]
11. Macromolecular dynamics in red blood cells investigated using neutron spectroscopy. Stadler AM; van Eijck L; Demmel F; Artmann G J R Soc Interface; 2011 Apr; 8(57):590-600. PubMed ID: 20739313 [TBL] [Abstract][Full Text] [Related]
12. Molecular origin and hydration dependence of protein anharmonicity: an elastic neutron scattering study. Schiró G; Caronna C; Natali F; Cupane A Phys Chem Chem Phys; 2010 Sep; 12(35):10215-20. PubMed ID: 20668739 [TBL] [Abstract][Full Text] [Related]
13. Temperature- and hydration-dependent protein dynamics in photosystem II of green plants studied by quasielastic neutron scattering. Pieper J; Hauss T; Buchsteiner A; Baczyński K; Adamiak K; Lechner RE; Renger G Biochemistry; 2007 Oct; 46(40):11398-409. PubMed ID: 17867656 [TBL] [Abstract][Full Text] [Related]
14. Temperature dependence of dynamics of hydrated myoglobin. Comparison of force field calculations with neutron scattering data. Loncharich RJ; Brooks BR J Mol Biol; 1990 Oct; 215(3):439-55. PubMed ID: 2231714 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of protein and its hydration water: neutron scattering studies on fully deuterated GFP. Nickels JD; O'Neill H; Hong L; Tyagi M; Ehlers G; Weiss KL; Zhang Q; Yi Z; Mamontov E; Smith JC; Sokolov AP Biophys J; 2012 Oct; 103(7):1566-75. PubMed ID: 23062349 [TBL] [Abstract][Full Text] [Related]
16. Influence of hydration on the dynamics of lysozyme. Roh JH; Curtis JE; Azzam S; Novikov VN; Peral I; Chowdhuri Z; Gregory RB; Sokolov AP Biophys J; 2006 Oct; 91(7):2573-88. PubMed ID: 16844746 [TBL] [Abstract][Full Text] [Related]
17. Conditioning action of the environment on the protein dynamics studied through elastic neutron scattering. Paciaroni A; Cornicchi E; De Francesco A; Marconi M; Onori G Eur Biophys J; 2006 Sep; 35(7):591-9. PubMed ID: 16761157 [TBL] [Abstract][Full Text] [Related]
18. Internal motions of actin characterized by quasielastic neutron scattering. Fujiwara S; Plazanet M; Matsumoto F; Oda T Eur Biophys J; 2011 May; 40(5):661-71. PubMed ID: 21249494 [TBL] [Abstract][Full Text] [Related]
19. The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins. Fitter J Biophys J; 1999 Feb; 76(2):1034-42. PubMed ID: 9916035 [TBL] [Abstract][Full Text] [Related]
20. Water-protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions. Mamontov E; Chu XQ Phys Chem Chem Phys; 2012 Sep; 14(33):11573-88. PubMed ID: 22828893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]