These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 19527687)
41. Modeling the tertiary interactions in the eukaryotic selenocysteine tRNA. Ioudovitch A; Steinberg SV RNA; 1998 Apr; 4(4):365-73. PubMed ID: 9630244 [TBL] [Abstract][Full Text] [Related]
42. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations. Lesjak S; Weygand-Durasevic I FEMS Microbiol Lett; 2009 May; 294(1):111-8. PubMed ID: 19309487 [TBL] [Abstract][Full Text] [Related]
43. Transfer RNA recognition by class I lysyl-tRNA synthetase from the Lyme disease pathogen Borrelia burgdorferi. Ambrogelly A; Frugier M; Ibba M; Söll D; Giegé R FEBS Lett; 2005 May; 579(12):2629-34. PubMed ID: 15862301 [TBL] [Abstract][Full Text] [Related]
44. Expression of bovine mitochondrial tRNASer GCU derivatives in Escherichia coli. Hayashi I; Kawai G; Watanabe K Nucleic Acids Res; 1997 Sep; 25(17):3503-7. PubMed ID: 9254711 [TBL] [Abstract][Full Text] [Related]
46. [Comparative study of the reactability of phosphoric acid residues in tRNA(Ser) and tRNA(Leu) from Thermus thermophilus]. Kovalenko OP; Petrushenko ZM; Kriklivyĭ IA; Iaremchuk AD; Tukalo MA Bioorg Khim; 1999 Oct; 25(10):768-73. PubMed ID: 10645480 [TBL] [Abstract][Full Text] [Related]
47. Identity determinants of human tRNA(Ser): sequence elements necessary for serylation and maturation of a tRNA with a long extra arm. Achsel T; Gross HJ EMBO J; 1993 Aug; 12(8):3333-8. PubMed ID: 8344269 [TBL] [Abstract][Full Text] [Related]
48. Synthesis of beta-ketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyl-tRNA synthetases. Balg C; Blais SP; Bernier S; Huot JL; Couture M; Lapointe J; Chênevert R Bioorg Med Chem; 2007 Jan; 15(1):295-304. PubMed ID: 17049867 [TBL] [Abstract][Full Text] [Related]
49. Crystallization and X-ray diffraction analysis of an 'all-locked' nucleic acid duplex derived from a tRNA(Ser) microhelix. Behling K; Eichert A; Fürste JP; Betzel C; Erdmann VA; Förster C Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Aug; 65(Pt 8):809-12. PubMed ID: 19652346 [TBL] [Abstract][Full Text] [Related]
50. Identity elements of human tRNA(Leu): structural requirements for converting human tRNA(Ser) into a leucine acceptor in vitro. Breitschopf K; Achsel T; Busch K; Gross HJ Nucleic Acids Res; 1995 Sep; 23(18):3633-7. PubMed ID: 7478989 [TBL] [Abstract][Full Text] [Related]
51. Structural studies on tRNA acceptor stem microhelices: exchange of the discriminator base A73 for G in human tRNALeu switches the acceptor specificity from leucine to serine possibly by decreasing the stability of the terminal G1-C72 base pair. Metzger AU; Heckl M; Willbold D; Breitschopf K; RajBhandary UL; Rösch P; Gross HJ Nucleic Acids Res; 1997 Nov; 25(22):4551-6. PubMed ID: 9358165 [TBL] [Abstract][Full Text] [Related]
52. Distinct domains of tRNA synthetase recognize the same base pair. Beebe K; Mock M; Merriman E; Schimmel P Nature; 2008 Jan; 451(7174):90-3. PubMed ID: 18172502 [TBL] [Abstract][Full Text] [Related]
53. Eight base changes are sufficient to convert a leucine-inserting tRNA into a serine-inserting tRNA. Normanly J; Ollick T; Abelson J Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5680-4. PubMed ID: 1608979 [TBL] [Abstract][Full Text] [Related]
54. Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements. Mao G; Chen TH; Srivastava AS; Kosek D; Biswas PK; Gopalan V; Kirsebom LA PLoS One; 2016; 11(8):e0160246. PubMed ID: 27494328 [TBL] [Abstract][Full Text] [Related]
55. Effect of G-1 on histidine tRNA microhelix conformation. Seetharaman M; Williams C; Cramer CJ; Musier-Forsyth K Nucleic Acids Res; 2003 Dec; 31(24):7311-21. PubMed ID: 14654706 [TBL] [Abstract][Full Text] [Related]
56. Translation of both complementary strands might govern early evolution of the genetic code. Rodin AS; Rodin SN In Silico Biol; 2007; 7(3):309-18. PubMed ID: 18415979 [TBL] [Abstract][Full Text] [Related]
57. Structural plasticity and enzyme action: crystal structures of mycobacterium tuberculosis peptidyl-tRNA hydrolase. Selvaraj M; Roy S; Singh NS; Sangeetha R; Varshney U; Vijayan M J Mol Biol; 2007 Sep; 372(1):186-93. PubMed ID: 17619020 [TBL] [Abstract][Full Text] [Related]
58. Overlapping nucleotide determinants for specific aminoacylation of RNA microhelices. Francklyn C; Shi JP; Schimmel P Science; 1992 Feb; 255(5048):1121-5. PubMed ID: 1546312 [TBL] [Abstract][Full Text] [Related]
59. Crystallization of the seryl-tRNA synthetase:tRNAS(ser) complex of Escherichia coli. Price S; Cusack S; Borel F; Berthet-Colominas C; Leberman R FEBS Lett; 1993 Jun; 324(2):167-70. PubMed ID: 8508916 [TBL] [Abstract][Full Text] [Related]
60. The exchange of the discriminator base A73 for G is alone sufficient to convert human tRNA(Leu) into a serine-acceptor in vitro. Breitschopf K; Gross HJ EMBO J; 1994 Jul; 13(13):3166-9. PubMed ID: 8039509 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]